mu-e conversion search experiment
COMET at J-PARC

Satoshi MIHARA
Satoshi.mihara@kek.jp
KEK, Japan
Outline

• J-PARC Introduction
• COMET at J-PARC
 – Proton/Muon beam at J-PARC
 – Detector
 – Sensitivity and Background
 – (R&D Status)
 – Schedule and Cost
• Summary
J-PARC Introduction

• What is J-PARC (Japan Proton Acceleration Research Complex)?
 – Joint project between JAEA and KEK
 – New and exciting accelerator research facility, using MW-class high power proton beams at both 3 GeV and 30 GeV.
 – Various secondary particle beams
 • neutrons, muons, kaons, neutrinos, etc. produced in proton-nucleus reactions
 – Three major scientific goals using these secondary beams
 • Particle and Nuclear physics
 • Materials and life sciences
 • R&D for nuclear transformation (in Phase 2)
 – The anticipated goal is 1 MW
J-PARC Accelerator

Commissioning Status

Linac

J-PARC Facility (KEK/JAEA)

South to North

Neutrino Beams (to Kamioka)

3 GeV Synchrotron

MR

3 GeV proton

Muons

Neutrons

< 30 GeV proton

Muons

Kaons

Materials and Life Experimental Facility

Hadron Exp. Facility

Bird's eye view in January of 2008
Status of Accelerator

- From 2008 four secondary beams have been obtained exactly on schedule;
 - neutron beams (May, 2008)
 - muon beams (September, 2008)
 - kaon beams (February, 2009)
 - neutrino beams (April, 2009)

\[\begin{align*}
\text{Linac 181MeV} & \quad \text{Upgrade to 400MeV in 2013} \\
& \quad \text{nEDM measurement proposal} \\
\text{RCS (booster) 3GeV} & \quad \text{120-300 kW operation for Material Life Science Facility} \\
& \quad \text{Particle physics experiments using muon} \\
\text{MR (Main Ring) 30 GeV} & \quad \text{100-150 kW operation with fast extraction for T2K} \\
& \quad \text{10kW operation with slow extraction for 2ndary beam expts}
\end{align*} \]
An Expected Beam Power Curves
defined before the earthquake

PMR (8-bunch@30GeV) = 1.6 x PRCS / MR CYCLE

(): Beam transfer ratio from RSC to MR

RCS POWER FOR MR

Linac energy upgrade

Earthquake

MR POWER AT 30GeV
(maximum cycle with existing power supply)

0.72MW
J-PARC Damage by Earthquakes

- No damage by Tsunami
- All equipments are standing at where they should be but...
 - Needed to align again
- LINAC/T2K near detector floors were covered by underground water
 - quickly removed when the electricity was recovered
- Many cracks on the wall in tunnels
- Inspection and recovery are in progress
- Plan to provide beam for experiments at the end of this JFY
 - Acceleration test in Dec. 2011!
Revised Beam Power Curves

Operation plan of RCS/MR-FX: made after the earthquake

- Original power upgrade plan of RCS
- 7 month summer/autumn shutdown for installation of ACS, new RFQ and IS.
- 3 month summer shutdown
- Shutdown due to the earthquake
- 200 kW (achieved)
- 145 kW (achieved)

J-PARC Power Expectation [MW]

- RCS power
- MR power

MR Improvements
- New injection kicker, Ring collimator shields, RF (6th fundamental, 2nd higher harmonics)
- Ring collimator upgrade, RF (3rd HH)

JFY
Introduction

mu-e conversion physics
Introduction
Lepton Flavour Violation of Charged Leptons

Neutrino Mixing
(confirmed)

\[\bar{\nu}_e \quad \bar{\nu}_\mu \quad \bar{\nu}_\tau \]

\[e \quad \mu \quad \tau \]

Charged Lepton Mixing
(not observed yet)

LFV diagram in Standard Model

\[\propto (m_\nu / m_W)^4 \]

Very Small \(10^{-52}\)

LFV diagram in SUSY

Sensitive to new Physics beyond the Standard Model
What is μ-e Conversion?

1s state in a muonic atom

Neutrino-less muon nuclear capture (= μ-e conversion)

$$\mu^- + (A, Z) \rightarrow e^- + (A, Z)$$

muon decay in orbit

$$\mu^- \rightarrow e^- \nu \bar{\nu}$$

nuclear muon capture

$$\mu^- + (A, Z) \rightarrow \nu_\mu + (A, Z - 1)$$

lepton flavors changes by one unit

$$B(\mu^- N \rightarrow e^- N) = \frac{\Gamma(\mu^- N \rightarrow e^- N)}{\Gamma(\mu^- N \rightarrow \nu N')}$$
μ-e conversion Signal

- \(E_{\mu e} \sim m_\mu - B_\mu \)
 - \(B_\mu \): binding energy of the 1s muonic atom

- Comparison with \(\mu \rightarrow e\gamma \) (and \(\mu \rightarrow 3e \)) from the view point of experimental technique

<table>
<thead>
<tr>
<th>Background</th>
<th>Challenge</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\mu \rightarrow e\gamma) and (\mu \rightarrow 3e)</td>
<td>Accidental</td>
</tr>
<tr>
<td>(\mu \rightarrow e\gamma) and (\mu \rightarrow 3e)</td>
<td>Detector performance resolution, high rate</td>
</tr>
<tr>
<td>(\mu - e) conversion</td>
<td>Beam</td>
</tr>
<tr>
<td></td>
<td>Cosmic</td>
</tr>
<tr>
<td></td>
<td>Beam background</td>
</tr>
</tbody>
</table>

- Improvement of a muon beam is possible, both in purity (no pions) and in intensity (*thanks to muon collider Re3D*). A higher beam intensity can be taken because of no accidentals.

- Potential to discriminate different models through studying the \(Z \) dependence

R. Kitano, M. Koike, Y. Okada
$\mu \rightarrow \gamma \gamma$ and $\mu - e$ conversion
$\mu \rightarrow e\gamma$ and μ-e conversion

- If $\mu \rightarrow e\gamma$ exits, μ-e conv must be
\(\mu \rightarrow e\gamma \) and \(\mu \)-e conversion

- If \(\mu \rightarrow e\gamma \) exits, \(\mu \)-e conv must be
- Even if \(\mu \rightarrow e\gamma \) is not observed, \(\mu \)-e conv may be
 - Loop vs Tree
 - Searches at LHC
µ→eγ and µ-e conversion

- If µ→eγ exits, µ-e conv must be
- Even if µ→eγ is not observed, µ-e conv may be
 - Loop vs Tree
 - Searches at LHC
If $\mu \rightarrow e \gamma$ exits, μ-e conv must be.

Even if $\mu \rightarrow e \gamma$ is not observed, μ-e conv may be
- Loop vs Tree
- Searches at LHC
If $\mu \rightarrow e\gamma$ exits, μ-e conv must be

Even if $\mu \rightarrow e\gamma$ is not observed, μ-e conv may be
- Loop vs Tree
- Searches at LHC
What can we learn from cLFV search?

- Mass matrix information of SUSY sleptons
 - How SUSY is breaking?
 - What kind of LFV interactions at GUT scale?

- Off-diagonal components
 - How SUSY is breaking?
 - What kind of LFV interactions at GUT scale?
SUSY-GUT and Seesaw

\[(m^2_L)_{ij} = m^2_0 \delta_{ij}\] @ Planck mass scale

SUSY-GUT
Yukawa interaction

\[(\Delta m^2_{ij})_{ij} \neq 0\]

SUSY Seesaw Model
Neutrino Yukawa interaction

\[m^2_0 \approx \frac{3m^2_0 + A^2_0}{8\pi^2} h^2 V_{td} V_{ts} \ln \frac{M_{GUT}}{M_{Rs}}\]

CKM matrix

LFV

\[m^2_{\tau} \approx \frac{3m^2_0 + A^2_0}{8\pi^2} h^2 U_{i1} U_{i2} \ln \frac{M_{GUT}}{M_{Rs}}\]

Neutrino oscillation

L.J. Hall, V. Kostelecky, S. Raby, 1986; A. Masiero, F. Borzumati, 1986
cLFV Search and ν oscillation, g-2

Hep-ph/0607263v2 S.Antusch et al
cLFV Search and ν oscillation, g-2

$|\delta_{12}^{LL}| = 10^{-4}$ and $|\delta_{23}^{LL}| = 10^{-2}$

$300 \text{ GeV} \leq M_{\tilde{\ell}} \leq 600 \text{ GeV}$

$200 \text{ GeV} \leq M_2 \leq 1000 \text{ GeV}$

$500 \text{ GeV} \leq \mu \leq 1000 \text{ GeV}$

$10 \leq \tan \beta \leq 50$

$A_U = -1 \text{ TeV}$

$M^*q = 1.5 \text{ TeV}$

and the GUT relations.

B-physics constraints case shown in red

hep-ph/0703035v2 G.Isidori et al
cLFV Search and ν oscillation, g-2

|δ_{12}^{LL}| = 10^{-4} and |δ_{23}^{LL}| = 10^{-2}
300 \text{ GeV} \leq M_{\sim \ell} \leq 600 \text{ GeV}
200 \text{ GeV} \leq M_2 \leq 1000 \text{ GeV}
500 \text{ GeV} \leq \mu \leq 1000 \text{ GeV}
10 \leq \tan \beta \leq 50
A_U = -1 \text{ TeV}
M_q = 1.5 \text{ TeV}
and the GUT relations.
B-physics constraints case shown in red

Current Bound

This Experiment

~10

0.002

hep-ph/0703035v2 G.Isidori et al
$0\nu\beta\beta$ and μ-e conversion

- V. Cirigliano et al. PRL 93, 231802 (04)

- $R = B(\mu \rightarrow e)/B(\mu \rightarrow e\gamma)$

- RPV-SUSY
 - $R \gg 10^{-2}$

- LRSM (Left-Right Symmetric Model)
 - $R \sim O(1)$

- Important to measure R to extract $m_{0\nu\beta\beta}$ from $\Gamma_{0\nu\gamma\gamma}$
MEG at PSI Status

- Physics data production started in 2008
- Current published limit $\text{Br}(\mu \rightarrow e\gamma)<2.4 \times 10^{-12}$ (at 90% C.L.) using 2009 and 2010 data
- Further data statistic; 2011 DAQ finished this morning!
- Detector upgrade is under discussion to further sensitivity improvement

![Graph showing likelihood distributions as a function of the $\mu \rightarrow e\gamma$ branching ratio for 2009, 2010, and the combined 2009 + 2010 data sample.](image-url)
Status of Muon cLFV

<table>
<thead>
<tr>
<th>MEGA</th>
<th>SINDRUM II</th>
<th>MEG</th>
</tr>
</thead>
<tbody>
<tr>
<td>Los Alamos</td>
<td>PSI</td>
<td>PSI</td>
</tr>
<tr>
<td>$\mu \rightarrow e \gamma$</td>
<td>μ-e conversion</td>
<td>$\mu \rightarrow e \gamma$</td>
</tr>
</tbody>
</table>

Pulsed μ beam (28MeV/c)
- $4 \times 10^7 \text{ s}^{-1}$

(Cont.) μ beam (52MeV/c)
- $\sim 10^7 \text{ s}^{-1}$

Cont. μ beam (28MeV/c)
- $3 \times 10^7 \text{ s}^{-1}$

DAQ completed in 1995
- PRD 65, 112002
- UL 1.2 $\times 10^{-11}$

DAQ completed
- EPJ C47 337-346 (2006)
- UL (Au) 7×10^{-13}

DAQ in progress
- PRL 107 (2011) 171801
- UL 2.4 $\times 10^{-12}$
The SINDRUM-II Experiment (at PSI)

Published Results

\[B(\mu^{-} + Au \rightarrow e^{-} + Au) < 7 \times 10^{-13} \]

SINDRUM-II used a continuous muon beam from the PSI cyclotron. To eliminate beam related background from a beam, a beam veto counter was placed.
The MELC and MECO Proposals

- MELC (Russia) and then MECO (the US)
- To eliminate beam related background, beam pulsing was adopted (with delayed measurement)
- To increase a number of muons available, pion capture with a high solenoidal field was adopted
- For momentum selection, curved solenoid was adopted

The MECO Experiment

at BNL

Cancelled in 2005
The MELC and MECO Proposals

- MELC (Russia) and then MECO (the US)
- To eliminate beam related background, beam pulsing was adopted (with delayed measurement)
- To increase a number of muons available, pion capture with a high solenoidal field was adopted
- For momentum selection, curved solenoid was adopted

The MECO Experiment

at BNL

Cancelled in 2005

⇒ mu2e @ Fermilab
Mu2E @ Fermilab

- The mu2e Experiment at Fermilab.
 - Proposal has been submitted.
 - CD-1 in Spring 2012
 - After the Tevatron shut-down
 - uses the antiproton accumulator ring
 - the debuncher ring to manipulate proton beam bunches
ESME Simulations – Scenario I

Bunching using Barrier saw-tooth rf and 2.5 MHz rf.
Beam is ready for the Mu2e experiment in \(\approx 33 \) ms after the 3rd injection

Saw-tooth rf using Barrier RF
\(t=0.146 \) sec after the 1st injection

Partial bunching with Barrier rf \(T\approx 0.152 \) sec

\(\sim 100\% \) Duty factor

Capture with 2.5MHz rf,
\(t=0.167 \) sec \(V_{rf} \) (2.5MHz) = 170kV

\(t=0.167 \) sec

\(\sigma_{E(RMS)} \approx 35\text{ns}, \quad \text{FW} \approx 147\text{ns} \)

FW= 180 MeV
\(\sigma_{E(RMS)} = 35\text{MeV} \)

Chandra Bhat

C. Bhat and M. Syphers Mu2e Acc WG meeting Mar 9, 2010
cLFV Search Experiment
cLFV Search Experiment

- cLFV search is as important as high-energy frontier experiments (and ν oscillation measurements) to find a clue to understand
 - SUSY-GUT
 - Neutrino See-saw
cLFV Search Experiment

- cLFV search is as important as high-energy frontier experiments (and ν oscillation measurements) to find a clue to understand
 - SUSY-GUT
 - Neutrino See-saw

- MEG is running first and will improve the sensitivity more in future
cLFV Search Experiment

• cLFV search is as important as high-energy frontier experiments (and \(\nu\) oscillation measurements) to find a clue to understand
 – SUSY-GUT
 – Neutrino See-saw

• MEG is running first and will improve the sensitivity more in future
cLFV Search Experiment

• cLFV search is as important as high-energy frontier experiments (and ν oscillation measurements) to find a clue to understand
 – SUSY-GUT
 – Neutrino See-saw

• MEG is running first and will improve the sensitivity more in future

• Need other experiment(s) to confirm it
 – Using “different” physics process (with better sensitivity if possible)!
cLFV Search Experiment

- cLFV search is as important as high-energy frontier experiments (and ν oscillation measurements) to find a clue to understand
 - SUSY-GUT
 - Neutrino See-saw

- MEG is running first and will improve the sensitivity more in future

- Need other experiment(s) to confirm it
 - Using “different” physics process (with better sensitivity if possible)!

- COMET (COherent Muon Electron Transition)
 - Submitted a proposal to J-PARC in 2008 and a CDR in 2009,
 - and obtained Stage-1 approval in July 2009
 - TDR in preparation, will be published in 2011
An Experimental Search For Lepton Flavor Violating $\mu^- - e^-$ Conversion at Sensitivity of 10^{-16}

http://comet.phys.sci.osaka-u.ac.jp:8080/comet

COMET
70 people from 19 institutes (December 2010)

Imperial College London, UK
A. Kurup, J. Pasternak, Y. Uchida, P. Dauncey, U. Egede, P. Dornan

University College London, UK
M. Wing, M. Lancaster, R. D’Arcy, S. Cook

University of Glasgow
P. Soler

JINR, Dubna, Russia
V. Kalinnikov, A. Moiseenko, D. Mzhavia, J. Pontecorvo, B. Sabirov, Z. Tsamaiaidze, and P. Evtukhovich

BINP, Novosibirsk, Russia
D. Grigorev, A. Bondar, G. Fedotovich, A. Ryzhenenkov, D. Shemyakin

ITEP, Russia
M. Danilov, V. Rusinov, E. Tarkovsky

Institute for Nuclear Science and Technology
Vo Van Thuan

University of Science, HoChi Minh
Chau Vau Tao

University of Malaya
Wan Ahmad Tajuddin

Kyoto University, Kyoto, Japan
Y. Iwashita, Y. Mori, Y. Kuriyama, J.B Lagrange

Department of Physics, Osaka University, Japan

Department of Physics, Saitama University, Japan
M. Koike, J. Sato, M. Yamanaka

High Energy Accelerator Research Organization (KEK), Japan

Department of Physics and Astronomy, University of British Columbia, Vancouver, Canada
D. Bryman

TRIUMF, Canada
T. Numao, I. Sekachev

Department of Physics, Brookhaven National Laboratory, USA
R. Palmer, Y. Cui

Department of Physics, University of Houston, USA
E. Hungerford, K. Lau

JINR, Dubna, Russia
V. Kalinnikov, A. Moiseenko, D. Mzhavia, J. Pontecorvo, B. Sabirov, Z. Tsamaiaidze, and P. Evtukhovich

BINP, Novosibirsk, Russia
D. Grigorev, A. Bondar, G. Fedotovich, A. Ryzhenenkov, D. Shemyakin

ITEP, Russia
M. Danilov, V. Rusinov, E. Tarkovsky

Institute for Nuclear Science and Technology
Vo Van Thuan

University of Science, HoChi Minh
Chau Vau Tao

University of Malaya
Wan Ahmad Tajuddin

Kyoto University, Kyoto, Japan
Y. Iwashita, Y. Mori, Y. Kuriyama, J.B Lagrange

Department of Physics, Osaka University, Japan

Department of Physics, Saitama University, Japan
M. Koike, J. Sato, M. Yamanaka

High Energy Accelerator Research Organization (KEK), Japan

Department of Physics and Astronomy, University of British Columbia, Vancouver, Canada
D. Bryman
Overview of the COMET Experiment
Overview of the COMET Experiment

- **Proton Beam**
 - $p \rightarrow \pi \rightarrow \mu$
 - 8GeV, $\sim 7 \mu$A

- **The Muon Source**
 - Proton Target
 - Pion Capture
 - Muon Transport

- **The Detector**
 - Muon Stopping Target
 - Electron Transport
 - Electron Detection
Proton BEAM
Requirements for the Beam

• Backgrounds
 – Beam Pion Capture
 • \(\pi^+ (A,Z) \rightarrow (A,Z-1)^0 \rightarrow \gamma + (A,Z-1) \gamma \rightarrow e^+ e^- \)
 • *Prompt timing* \(\rightarrow\) *good Extinction!*
 – \(\mu^-\) decay-in-flight, \(e^-\) scattering, neutron streaming

• Requirements from the experiment
 – Pulsed
 – High purity
 – Intense and high repetition rate
Requirements for the Beam

- **Backgrounds**
 - Beam Pion Capture
 - $\pi^+ + (A, Z) \rightarrow (A, Z-1)^0 \rightarrow \gamma + (A, Z-1) \gamma \rightarrow e^+ e^-$
 - *Prompt timing \rightarrow good Extinction!*
 - μ^- decay-in-flight, e^- scattering, neutron streaming

- **Requirements from the experiment**
 - Pulsed
 - High purity
 - Intense and high repetition rate
Requirements for the Beam

- Backgrounds
 - Beam Pion Capture
 - $\pi^+(A,Z) \rightarrow (A,Z-1)^0 \rightarrow \gamma + (A,Z-1) \gamma \rightarrow e^+ e^-$
 - *Prompt timing \rightarrow good Extinction!*
 - μ^- decay-in-flight, e^- scattering, neutron streaming

- Requirements from the experiment
 - Pulsed
 - High purity
 - Intense and high repetition rate
Requirements for the Beam

- **Backgrounds**
 - Beam Pion Capture
 - $\pi^+ (A,Z) \rightarrow (A,Z-1)^{\circ} \rightarrow \gamma + (A,Z-1) \rightarrow e^+ e^-$
 - *Prompt timing → good Extinction!*
 - μ^- decay-in-flight, e^- scattering, neutron streaming

- **Requirements from the experiment**
 - Pulsed
 - High purity
 - Intense and high repetition rate
Requirements for the Proton Beam

- Proton beam structure for the mu-e conversion search
 - 100nsec bunch width, 1.3 (or 1.7) µsec bunch-bunch spacing
 - 8GeV to suppress anti-proton background
 - < 10^{11} proton/bunch, limited by the detector performance
 - Repetition rate as high as possible within tolerable CR background

- Extinction
 - Residual protons in between the pulses should be $< 10^{-9}$

\[
N_{\text{bg}} = NP \times R_{\text{ext}} \times Y_\pi/P \times A_\pi \times P_\gamma \times A
\]

- NP : total # of protons ($\sim 10^{21}$)
- R_{ext} : Extinction Ratio (10^{-9})
- Y_π/P : π yield per proton (0.015)
- A_π : π acceptance (1.5×10^{-6})
- P_γ : Probability of γ from π (3.5×10^{-5})
- A : detector acceptance (0.18)

\[
\text{BR}=10^{-16}, \ N_{bg} \sim 0.1 \rightarrow \ Extinction < 10^{-9}
\]
J-PARC Proton Acceleration for COMET

- RCS: $h=2$ with one empty bucket
- MR: $h=8(9)$ with 4(3) empty buckets
- Bunched slow extraction
 - Slow extraction with RF cavity ON

Realization of an empty bucket in RCS by using the chopper in Linac

- Simple solution
 - No need of hardware modification
 - Heavier heat load in the scraper
 - Possible leakage of chopped beam in empty buckets
J-PARC Proton Acceleration for COMET

- RCS: h=2 with one empty bucket
- MR: h=8(9) with 4(3) empty buckets
- Bunched slow extraction
 - Slow extraction with RF cavity ON

Realization of an empty bucket in RCS by using the chopper in Linac

- Simple solution
- No need of hardware modification
- Heavier heat load in the scraper
- Possible leakage of chopped beam in empty buckets
Muon/pion production
Pion Production Target

- low-E pions
 - for low-E muons to stop
 - Backward extraction
- pion yield is proportional to T_{proton}
 - pion yld is proportional to Beam Power
- Target material
 - High-Z Metal Rod like tungsten or gold
 - Water cooling
 - Graphite
 - Helium gas cooling

Target radius optimization
Pion Capture

- > 5 T at the target position
 - capture $p_t < 120$ MeV/c
- Radiation Shield
 - < 100 W on SC coil
 - 3-4 kW @ target
 - 35 kW @ W Shield
 - 2×10^{-5} W/g @ coil
- Yields
 - $0.05(\pi+\mu)/8$-GeV-proton
π-Capture Solenoid

- Heat-load density: 2×10^{-5} W/g behind W shield
- Utilize Al stabilized SC cable to reduce a heat load to the cold mass.
 - Cable dimension: 15mm x 4.7mm

<table>
<thead>
<tr>
<th>Length (mm)</th>
<th>Thickness (mm)</th>
<th>ρ_{Current} (A/mm2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coil 1</td>
<td>1200</td>
<td>90 (6 layers)</td>
</tr>
<tr>
<td>Coil 2</td>
<td>1400</td>
<td>30 (2 layers)</td>
</tr>
<tr>
<td>Coil 3</td>
<td>600</td>
<td>30 (2 layers)</td>
</tr>
<tr>
<td>Coil 4</td>
<td>300</td>
<td>60 (4 layers)</td>
</tr>
</tbody>
</table>

Al-SC: one of world leading expertise of KEK
Muon transport
Muon Transport
Muon Transport

Guide π's until decay to μ's

Suppress high-p particles

- μ's: $p_{\mu} < 75$ MeV/c
- e's: $p_e < 100$ MeV/c

Beam Blocker

Beam collimator
High-\(p\) Suppression

- A center of helical trajectory of charged particles in a curved solenoidal field is drifted by

\[
D[m] = \frac{1}{0.3 \times B[T]} \times \frac{s}{R} \times \frac{p_i^2 + \frac{1}{2}p_t^2}{p_t}
\]

- This effect can be used for charge and momentum selection.

- This drift can be compensated by an auxiliary field parallel to the drift direction

\[
\delta p/\delta x = 1 \text{ MeV}/\text{c/cm}
\]

See “Classical Electrodynamics”, J.D.Jackson Ch.12-Sec.4
Spectra at the End of the Muon Transport

- Preliminary beamline design
 - main magnetic field
 - compensation field
 - Inner radius of transport magnet cryostat (175 mm)
- Transport Efficiency

<table>
<thead>
<tr>
<th></th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td># of μ /proton</td>
<td>0.0071</td>
</tr>
<tr>
<td># of stopped muons/proton</td>
<td>0.0035</td>
</tr>
<tr>
<td># of muons with $p > 75$ MeV/c / proton</td>
<td>10^{-5}</td>
</tr>
</tbody>
</table>

Dispersion on the muon beam just before the collimator.

Spectra at the end of the beamline
- (top left) total momentum
- (top right) p_t vs p_L
- (bottom left) time of flight
- (bottom right) beam profile

75 MeV/c
The COMET Detector
The COMET Detector

to detect and identify 100 MeV electrons.

Detector Section

under a solenoid magnetic field.

Target Section

to stop muons in the muon stopping target

to eliminate low-energy beam particles and to transport only ~100 MeV electrons.

Curved Solenoid
Muon Stopping Target

- Light material for delayed measurement (1st choice)
 - Aluminum: $\tau_{\mu^-} = 0.88$ μs
- Thin disks to minimize electron energy loss in the target
 - $R = 100$ mm, 200μm, 17 disks, 50 mm spacing
- Graded B field for a good transmission in the downstream curved section.
- Good μ-Stopping efficiency: $\varepsilon = 0.66$
 - Muon rate 1.5×10^{11}/sec
 - stopped-muon yields: ~ 0.0023 μ/proton
Curved Solenoid Spectrometer

- Torus drift for rejecting low energy DIO electrons.

\[D[m] = \frac{1}{0.3 \times B[T]} \times \frac{s}{R} \times \frac{p_i^2 + \frac{1}{2}p_t^2}{p_t} \]

- rejection \(\sim 10^{-6} \): < 10kHz

- Good acceptance for signal electrons (w/o including event selection and trigger acceptance)
 - 20%

60-MeV/c DIO electrons

105-MeV/c \(\mu \)-e electron

Transmission Efficiency graph

Electron Total Energy (MeV) vs. Transmission Efficiency
Electron Detectors

• Rate < 800 kHz
• Straw-tube tracker to measure electron momentum
 – 5 Planes with 48 cm distance, $\sigma_p = 230$ keV/c
 • One plane has 2 views (x and y) with 2 layers per view.
 • A straw tube has 25 mm thick, 5 mm diameter.
 – should work in vacuum and under a magnetic field.
 – <500µm position resolution.
• Crystal calorimeter for Trigger
 – GSO, PWO, LYSO, or new crystals …
Experimental Space
A possible layout

- Discussion in the task force
 - Target and beam dump outside the hall
 - Share the upstream proton transport line with the high p beam line
 - External extinction device in the switch yard
Experimental Space
A possible layout

- Discussion in the task force
 - Target and beam dump outside the hall
 - Share the upstream proton transport line with the high p beam line
 - External extinction device in the switch yard
Signal Sensitivity
2x10^7 sec running

- Single event sensitivity

\[B(\mu^- + Al \rightarrow e^- + Al) \sim \frac{1}{N_\mu \cdot f_{\text{cap}} \cdot A_e}, \]

- \(N_\mu \) is a number of stopping muons in the muon stopping target. It is 2.0x10^{18} muons.
- \(f_{\text{cap}} \) is a fraction of muon capture, which is 0.6 for aluminum.
- \(A_e \) is the detector acceptance, which is 0.031.

<table>
<thead>
<tr>
<th>total protons</th>
<th>8.5x10^{20}</th>
</tr>
</thead>
<tbody>
<tr>
<td>muon yield per proton</td>
<td>0.0035</td>
</tr>
<tr>
<td>muon stopping efficiency</td>
<td>0.66</td>
</tr>
<tr>
<td># of stopped muons</td>
<td>2.0x10^{18}</td>
</tr>
</tbody>
</table>

Single event sensitivity

2.6 \times 10^{-17}

90% C.L. upper limit

6.0 \times 10^{-17}
Background Estimation Summary

<table>
<thead>
<tr>
<th>Background</th>
<th>Events</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Radiative Pion Capture</td>
<td>0.05</td>
<td></td>
</tr>
<tr>
<td>Beam Electrons</td>
<td><0.1</td>
<td>MC stat limited</td>
</tr>
<tr>
<td>Muon Decay in Flight</td>
<td><0.0002</td>
<td></td>
</tr>
<tr>
<td>Pion Decay in Flight</td>
<td><0.0001</td>
<td></td>
</tr>
<tr>
<td>Neutron Induced</td>
<td>0.024</td>
<td>For high E_n</td>
</tr>
<tr>
<td>Delayed-Pion Radiative Capture</td>
<td>0.002</td>
<td></td>
</tr>
<tr>
<td>Anti-proton Induced</td>
<td>0.007</td>
<td>For 8 GeV p</td>
</tr>
<tr>
<td>Muon Decay in Orbit</td>
<td>0.15</td>
<td></td>
</tr>
<tr>
<td>Radiative Muon Capture</td>
<td><0.001</td>
<td></td>
</tr>
<tr>
<td>Muon Capture with n Emission</td>
<td><0.001</td>
<td></td>
</tr>
<tr>
<td>Muon Capture with Charged Part. Emission</td>
<td><0.001</td>
<td></td>
</tr>
<tr>
<td>Cosmic-Ray Muons</td>
<td>0.002</td>
<td></td>
</tr>
<tr>
<td>Electrons from Cosmic-Ray Muons</td>
<td>0.002</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>0.34</td>
<td></td>
</tr>
</tbody>
</table>

Assuming proton beam extinction < 10^{-9}
R&D Status
R&D Status

• Straw-tube tracker
 – Done by Osaka group for MECO
 – being continued at KEK

• Crystal calorimeter

• Transport Solenoid

• Extinction Measurement
 • Device R&D
 • Gas Cherenkov + Gated PMT
 • Extinction measurement at J-PARC MR
R&D Status

SC Magnet & Detector

Al stabilized conductor

Crystal development

Neutron irradiation at a research reactor

Straw-tube tracker
Slow Extraction R&D

- Measure the time structure of the primary proton beam
- Secondary beam at K1.1BR
- 800MeV/c, pion dominant, 200k/spill
- Primary Beam Condition
 - h=9, 3 filled and 6 empty
 - 30GeV
- Bunched Slow Extraction
- Bunch ID using MR Flat Top and RF signals
- Read out
 - Measure secondary beam (~100k sample/spill) for tens of minutes and get 10^8 samples
Extinction Measurement Result

- Normal beam injection to MR
- Integration over 20 minutes
- Extinction level at $(5.4 \pm 0.6) \times 10^{-7}$
Schedule and Construction Cost

Funding starting

<table>
<thead>
<tr>
<th>Year</th>
<th>Activity</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st</td>
<td>design & order of SC wires</td>
</tr>
<tr>
<td>2nd</td>
<td></td>
</tr>
<tr>
<td>3rd</td>
<td></td>
</tr>
<tr>
<td>4th</td>
<td></td>
</tr>
<tr>
<td>5th</td>
<td>engineering run</td>
</tr>
<tr>
<td>6th</td>
<td>physics run</td>
</tr>
</tbody>
</table>

1 Oku JPY ~ 0.953 M Euro

<table>
<thead>
<tr>
<th>Item</th>
<th>Cost (Oku JPY)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proton beam line</td>
<td></td>
</tr>
<tr>
<td>Proton beam line magnets</td>
<td>17</td>
</tr>
<tr>
<td>Proton beam dump</td>
<td>2</td>
</tr>
<tr>
<td>Radiation shielding for a proton beam line</td>
<td>3</td>
</tr>
<tr>
<td>Superconducting Solenoid</td>
<td>35.7</td>
</tr>
<tr>
<td>Detector</td>
<td></td>
</tr>
<tr>
<td>Electron tracker</td>
<td>2.1</td>
</tr>
<tr>
<td>Electron calorimeter</td>
<td>2.3</td>
</tr>
<tr>
<td>Cosmic ray shield</td>
<td>3</td>
</tr>
<tr>
<td>DAQ system</td>
<td>0.5</td>
</tr>
<tr>
<td>Infrastructure</td>
<td></td>
</tr>
<tr>
<td>Refrigeration</td>
<td>4.7</td>
</tr>
<tr>
<td>Pion production system and tungsten shielding</td>
<td>2.3</td>
</tr>
<tr>
<td>Civil construction</td>
<td></td>
</tr>
<tr>
<td>Extension of the NP experimental hall</td>
<td>3</td>
</tr>
<tr>
<td>Total</td>
<td>75</td>
</tr>
<tr>
<td>Total (with 20% contingency)</td>
<td>90</td>
</tr>
</tbody>
</table>
Schedule

Budget request to realize;
Construction starts in 2014
Engineering run in 2018

<table>
<thead>
<tr>
<th>Component</th>
<th>2012</th>
<th>2014</th>
<th>2016</th>
<th>2018</th>
<th>2020</th>
</tr>
</thead>
<tbody>
<tr>
<td>Accelerator</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Proton Beam line</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pion Capture</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Muon Transport</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Detector</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Infrastructure</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Run</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- R&D, Preparation
- Construction
- Installation
- Engineering Run
- Physics Run
Yet Another Mu-e conversion Search at J-PARC
DeeMe
µ-e electrons may directly come from a production target.

- An electron analogue of the surface muon.
- Experiment could be very simple, quick and low-cost.

→ DeeMe
DeeMe Overview

- Proton beam from RCS
- Pion production target as a muon stopping target
- Replace the current graphite target with a SiC target
- Si has larger muonic-nuclear capture rate
- Beam line as an electron spectrometer
- Secondary beam-line kicker to remove prompt BG
- Only delayed electrons enter the spectrometer
- S.E.S. 1.5×10^{-14} for 2×10^7 sec DAQ

![Diagram showing experimental setup and beam paths]
DeeMe Overview

- Proton beam from RCS
- Pion production target as a muon stopping target
- Replace the current graphite target with a SiC target
- Si has larger muonic-nuclear capture rate
- Beam line as an electron spectrometer
- Secondary beam-line kicker to remove prompt BG
- Only delayed electrons enter the spectrometer
- S.E.S. 1.5×10^{-14} for 2×10^7 sec DAQ

3GeV Proton
Summary

• New experiment (COMET) to search for mu-e conversion at J-PARC

• COMET aims at achieving a sensitivity of 10^{-16}
 – High-intensity, high-purity pulsed proton beam at J-PARC
 – Curved solenoid muon transport/spectrometer to suppress backgrounds efficiently

• R&D work in progress
 – Detector
 – Magnet
 – Proton beam
 • Beam structure
 • Extinction
Backup
Target Material

- f_c: Fraction of the atomic capture of muon to the atom of interest
 - single-element material: $f_c = 1$
 - composite material: proportional to Z (Fermi-Teller Z law)
 - Silica-carbide $\text{Si:C}=7:3$

- f_{MC}: muonic nuclear-capture rate
 - $(1-f_{MC}) = f_{\text{free-decay}}$ --- useless muons: large f_{MC} is better

- On the other hand, $\tau_\mu \gg 300 \text{ nsec}$ (light Z) to avoid the prompt background

Engineering point of view:
- good thermal shock resistance
- high melting point
- good radiation resistance

<table>
<thead>
<tr>
<th>target material</th>
<th>$f_c \times f_{MC}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Graphite</td>
<td>0.08</td>
</tr>
<tr>
<td>Silica-carbide (SiC)</td>
<td>0.46</td>
</tr>
</tbody>
</table>
High-frequency Chopper

Materials and Life Science Experimental Facility

Hadron Beam Facility

Nuclear Transmutation

Linac (330m)

3 GeV Synchrotron (25 Hz, 1MW)

50 GeV Synchrotron (0.75 MW)

Neutrino to Kamiokande

J-PARC = Japan Proton Accelerator Research Complex
High-frequency Chopper
Additional Extinction Means

• AC-dipole
• @ primary beamline
• $f_{\text{extinction}} \sim 1/100$
• collaboration with mu2e

• Bunch Cleaner
 • in MR
 • tested at AGS for MECO
Background

- Event signature
 - $P_e = 105$ MeV/c
 - $T_e > \sim \mu$sec

- Any particle production 1μsec later than the prompt proton timing?
 - Only decay product of μ
 - Michel electron $P_e < 55$ MeV/c

- If any off-timing proton exists, that can be BG
 - Extinction $< 10^{-14}$