

Status of the COMET experiment

Manabu MORITSU (KEK)

On behalf of the COMET Collaboration

20th Workshop on Neutrinos from Accelerators (NUFACT2018) 13th Aug., 2018, Virginia Tech, Blacksburg

Lepton flavor violation (LFV)

Neutrino Oscillation

We already know that lepton flavor is no longer conserved
 ✓ neutrino oscillation, non-zero m_v
 The conservation law was just an empirical law
 ✓ without any symmetry behind

However,

in the charged lepton sector, LFV has never been observed yet...

Charged Lepton Flavor Violation

$$\frac{\Gamma(\mu \to e\gamma)}{\Gamma(\mu \to e\nu\nu)} \propto \left| \sum_{i} \frac{m_{i}^{2}}{m_{W}^{2}} U_{\mu i}^{*} U_{ei} \right|^{2} \sim O(10^{-54})$$

small mass ratio of neutrino to weak boson

Since the SM contribution is negligibly small, observation of the CLFV indicates a clear evidence of New Physics.

Muon-to-electron conversion

Fate of muonic atom

Background rejection

Background rejection (1)

Decay-in-orbit

→ Detector resolution

Intrinsic physics background

Muon decay in orbit

Required momentum resolution Δp < 200 keV/c for 105 MeV/c electrons

Background rejection (2)

② Beam-related prompt BG → Pulsed Beam

muon beam is contaminated by a lot of pions, and the momentum is spreading in a wide range.

- Radiative pion capture $\pi_{c}(AZ)_{2 \text{ bunches}} (AZ-1) \gamma, \gamma \rightarrow e^+e^- *E_{c} \text{ infinition} \overline{\text{decay}_{limber}} Broker in Single MeV/c}$
 - Anti-proton induced, etc.

Cf.) $\tau_{\mu}(Al) = 0.9 \,\mu \sec \theta$

· correlated with beam timing

- ✓ Long muon beam line
 - reduce π contami.
- ✓ Pulsed beam
 - prompt vs. delayed
- Delayed-timing measurement

Lifetime of the muonic atom should be comparable to the pulse interval

Background rejection (2)

$(\mathbf{2})$ Beam-related prompt BG → Pulsed Beam

muon beam is contaminated by a lot of pions, and the momentum is spreading in a wide range.

- Radiative pion capture, π⁻ (A,Z) → (A,Z-1) γ, γ → e⁺e⁻
 Muon decay in flight, p_µ > 75 MeV/c
- Anti-proton induced, etc.

> correlated with beam timing

- ✓ Long muon beam line
 - reduce π contami.
- Pulsed beam
 - prompt vs. delayed
- Delayed-timing measurement
- **V** Extinction factor $< 10^{-10}$

 $R_{ext} = \frac{\# \text{ of protons in between pulses}}{\# \text{ of protons in pulses}}$

Leaked protons are dangerous to make the beam BG in the timing window.

Background rejection (3)

Cosmic-ray induced

 $(\mathbf{3})$

- Cosmic rays may create 105-MeV electrons that come into a detector and make trigger.
- To avoid these CR induced BG, detector region have to be covered by veto counters.
- Required performance: **CRV inefficiency ~ 10**-4
- CR background ∝ data taking time (→ shorter running time with higher beam intensity is better)

The COMET Experiment

~200 collaborators

т

Y. Arimoto¹⁸, I. Bagaturia¹¹, S. Chen²⁸, Y. E. Cheung²⁸, I J. David²³, W. Da Silva²³, C V. Duginov¹⁶, L. Epshteyr M. Finger Jr⁸, Y. Fujii¹⁸, K. Gritsay¹⁶, E. Hamada¹ Z. A. Ibrahim²⁴, Y. Igarash S. Ishimoto¹⁸, T. Itahashi³², S F. Kapusta²³, H. Katayama³ A. Khvedelidze^{16,11}, T. K. K E. Kulish¹⁶, Y. Kuno³², Y. M. Lancaster³⁸, D. Lomidze¹¹, I. Lomidze¹¹, O. Markin¹⁵, Y. Matsumot, hamed Kamal Amil⁴, Matsumot, T. Nakamoto¹⁸, Y. Nakazaw T. Numao³⁶, J. O'Dell³³ T. Ota³⁴, J. Pasternak¹⁴, C A. Ryzhenenkov^{6,31}, B. Sab A. Sato³², J. Sato³⁴, Y. K. Se M. Slunecka⁸, A. Straessner Tanaka²², C. V. Tao²⁹. Tojo²², M. Tomasek¹⁰ N. M. Truong³², Z. Tsamalaid E. Velicheva¹⁶, A. Volkov¹⁶, V T. S. Wong³², C. Wu^{2, 28}, H. H. Yoshida³², M. Yoshida¹⁸ Y. Zhang², K. Zuber³⁷

R. Abramishvili¹¹, G. Ad

¹North China Electric ²Institute of High Energy ³Peking Un ⁴Belarusia ⁶Budker Institute ⁸Char

A

Accelerator

Cf.) Requirement $< 10^{-10}$

4.2: Kicker magnets excitation timing for the single bunch kicking (A) as compared to the - Good enough for COMET injection kicking shown in (B).

- COMET dedicated operation
 - Energy: 8 GeV
 - Pulsed beam: 1.17-µsec interval
 - 3.2 kW for Phase-I
 - 56 kW for Phase-II
- Obtained Extinction
 - $= 10^{-12} \sim 10^{-11}$ @ FX abort

Beam line

- New beam line & experimental hall were constructed.
- Bunched Slow Extraction (BSX)
 keeping bunch structure to realize the pulsed beam.
 MR
 A-line
 B-line
 B-line

High-intensity muon source

ndatory !!

С

• muon

• Vertical drift \rightarrow Momentum & charge selection

Capture solenoid

Transport solenoid

proton h

Phys. Rev. Accel. Beams 20, 030101 (2017).

proton beam

Transport Solenoid

3 T

Guide π 's until decay to μ 's

MuSIC @ RCNP, Osaka U

Production target

Capture Solenoid 5 T

Muon Stopping Target

1 ALANGARGARGANG

Production Target

COMET Phase-I

- \Rightarrow Physics measurement \rightarrow CyDet
 - μ -e conversion search, SES: 3×10^{-15} (×100 improve), 150 days running
- \Rightarrow Beam measurement \rightarrow StrECAL
 - to understand beam quality and background (PID, momentum, timing)

COMET Phase-II

- 1 year running

Recent Status

Beam line construction

Beam line wall construction was completed.

Solenoid magnet status

- Capture solenoid:
 - Coil winding & cold mass assembly in progress. Cryostat
- Transport solenoid:
 - Installed and ready for cryogenic test
- Bridge & Detector solenoids:
 - DS coil ready. Cryostat design in progress.
- Cryogenic System:
 - Refrigerator test completed. Helium transfer tube in prod

CyDet system

Detector for μ -e search in Phase-I

- **CDC** (Cylindrical Drift Chamber)
 - electron tracking in 1 T
 - $\Delta p = 200 \text{ keV/c}$ (for p=105 MeV/c)
 - Low-mass chamber
 - He:i-C₄H₁₀ (90:10)
 - 0.5-mm CFRP inner wall
 - Al field wire, $126\mu m$, 4986
 - Au-W sense wire, 25μm, 14562
 - Alternating all stereo layer
 - 20 layers, $\pm 64 \sim 75$ mrad
- **CTH** (Cylindrical Trigger Hodoscopes)
 - Scintillator & Acrylic Cherenkov
 - Finemesh PMT readout
 - 4-fold coincidence trigger

Stopping Target

- Al target consists of 17 discs
- 100-mm radius, 0.2-mm thickness, 50-mm spacing.

CyDet status

CDC cosmic-ray test is ongoing in KEK. Good performance was obtained.

High-level track trigger

- Software-level algorithm was already established.
- can reduce background hits into 1/20 while retaining 99% of signals.

(a) Event Display

(a)

1000

-2

-1.5

-0.5

0.5

Preliminary

run203 track463

[mm]

1850 / 37

7047 ± 25.2 -0.0166 ± 0.0005 0.163 ± 0.000

1.5

residual distribution for testlayer10

All 120 CDC FE boards were fabricated, and QA was finished in IHEP.

StrECAL system

Electron Calorimeter

- 1,920 LYSO crystals
 - $2 \times 2 \times 12$ cm (10.5 radiation length)
- $\Delta E/E = 5\%$ (for E=105 MeV)
- 40-ns decay time
- APD readout

Straw Tracker prototype

ECAL prototype

StrEC

10mm and 5 mm straw tubes

Tube welding process

fc

ermal study of FE in gas manifold was carried out.

prototype; (Left) Partially completed without vacuum wall, (Right) Whole ull-scale prototype Straw station assembly will start soon.

StrECAL Beam Test @ 2017 s momentum electron beam. The setup for the beam test is schemati-

s momentum electron beam. The setup for the beam test is schemati-11.34 (Left), and its photo is also shown in Figure 11.34 (Right). Here

a setup; (Left) Schematic view of the setup, (Fight) Photo of set up viewing

eam-difining counter" which consists of bidirectional 1-mm-thick scinti-

Sensitivity and Background

Background estimation

Background

Signal and DIO (BR=3 × 10 ⁻¹⁵)							
90.18 0.16 0.16 0.14 0.14 0.12		S	ianal				
⊢ !							
0.1				+			
0.06				+			
0.02 181.5 102	102.5 103 103	5 104 104	1.5 105 10 Momentu	5.5 106 m/MoV/d			
	03.6 < p	e < 10					

	Physics	Muon decay in orbit	0.01	
Detector		Radiative muon capture	0.0019	101.5 102 102.5 103 103.5 104 104.5 105 105.5 10 Mormentum [MeV/c]
		Neutron emission after muon capture	< 0.001	103.6 < pe < 106.0 MeV
		Charged particle emission after muon ca	apture < 0.001	
	Prompt Beam	* Beam electrons		
		* Muon decay in flight		Assuming
		* Pion decay in flight		$R_{ext} = 3 \times 10^{-11}$
		* Other beam particles		
Beam		All $(*)$ Combined	≤ 0.0038	700 < t _e < 1170 ns
		Radiative pion capture	0.0028	
		Neutrons	$\sim 10^{-9}$	
	Delayed Beam	luBeenoelentoosstopped inside targets	Fraction of µ-e conv	ersion t
		Muon decay in flight	~ 0	@ Phase-I
		Pion decay in flight of muons to be captu	red by AI target = 0.61 $^{\sim 0}$	
		Radiative pion capture	~ 0	
		Anti-proton induced backgrounds	0.0012	
CR	Othermber of m	nuGasistopeed inside targets	Fraction of µ-e conversion to	o the ground state $= 0.9$
	Total		0.032	
		[†] This estimate is currently limited by computin Fraction of muons to be captured by A	target = 0.61	

BG is small enough

OMET

Estimated events

Type

BG is still less than 1 by simulation

to be confirmed by Phase-I Beam Measurement

Summary & Prospects

- COMET aims to search for μ -e conversion with sensitivity of $3 \times 10^{-15} / 2 \times 10^{-17}$ at Phase-I / II.
- Detector & beam line preparation is intensively in progress.
- Detector will be ready in 2019 for Phase-I, and commissioning will start soon after completing the beam-line construction.
- Phase-II study is also in progress. We are able to optimize the Phase-II parameters based on the coming Phase-I results.