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Muon Lepton Flavor Violation

The deviation is seen, why 

not improve it ?

Only mixing of charged leptons 

has yet to be observed !

Muon Particle Physics would herald clues of new physics

beyond the Standard Model.

Lepton flavor violation (LFV)
!2

We already know that lepton flavor is no longer conserved 
✓  neutrino oscillation, non-zero mν 

The conservation law was just an empirical law 
✓  without any symmetry behind 

However,  
in the charged lepton sector,  
LFV has never been observed yet…

Charged Lepton Flavor Violation

Neutrino Oscillation

Options for decaying muons 

The most obvious candidate for the transition 
 to radiate is a photon, and the branching ratio is:  

      
Γ 𝜇 → 𝑒𝛾
Γ 𝜇 → 𝑒νν

∝  
𝑚𝑖2

𝑚𝑊2
𝑈𝜇𝑖∗ 𝑈𝑒𝑖

𝑖

2

  ~ O 10−54  

 
For a free muon, 𝛾 (or 𝑒𝑒) is the only option… 
…but in a muonic atom the radiation can be virtual 
 The nucleus absorbs it, and recoils slightly. 
 
• Because of the relatively large nuclear mass, 

the electron is effectively mono-energetic.  
• Because the process does not require a  

‘real’ photon, other diagrams are possible… 
 

𝝁 → 𝒆𝜸 (see note) 

𝒆  
𝝂 

𝑾  

𝝁  

𝜸 

𝝁 – 𝒆 conversion 

𝒆  
𝝂 

𝑾  
𝝁  

𝜸 
𝑨  𝑨  

Note:  The 𝜸 can connect 
anywhere, not just in the loop 

Since the SM contribution is negligibly small,  
observation of the CLFV indicates a clear evidence of New Physics.

# small mass ratio of neutrino to weak boson



Charged LFV in muons
!3

✓ Different measurements are complementary. 
✓ µ-e conversion is sensitive to both contributions.

e

�µ

q

qNP

e

µ
NP

q

q0

Figure 3.1: Schematic description of the two (tree level) e�ective contributions to µ≠e conversion: on
the left (right) panel, the photonic (four-fermion/contact) interaction.

rate; should the non-photonic contribution dominates, µ≠e conversion could be su�ciently
large to be observed, even if µ+

æ e+“ decay is small. In the latter case, even if no µ æ e“
signal is seen, there will still be an opportunity to find µ≠e conversion signals.
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Figure 3.2: A comparison of the parameter phase explored by COMET (and subsequent experiments)
to the present limits from MEG and SINDRUM. The parameter Ÿ parametrises the relative contribu-
tion of dipole and contact operators (cf. Eq. (3.5)), and � is an e�ective New Physics scale.

Although the approach of [26] allows for a phenomenological understanding of how the two
considered types of operators (dipole and four-fermion) can contribute to CLFV observables,
and to infer bounds on the scale of the associated New Physics, recent works have proposed a
more systematic approach (taking into account the simultaneous e�ects of an extended set of
operators, and including renormalisation of the e�ective coe�cients) [27, 28]. Following [29],
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mu-e Conversion
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μ+ → e+e+e-  versus  μ+ → e+γμ+ → e+e+e-  versus  μ+ → e+γ

L=
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Effective cLFV Lagrangian:

Phase I

Phase II

Andre de Gouvea, W. Molzon, Project-X WS 
(2008)

MEG 2016 
4.2x10-13

µ −
à e −ν ν 
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nuclear muon capture
 Muon Decay In Orbit

µ−

µ− + (A,Z) e− + (A,Z)à

μ-e conversion

Effective Lagrangian
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μ-e conversion in BSM

• μ-e conversion appears in many physics models beyond the standard model (BSM)
• Sensitive to the new physics (NP) independent on models

• Unless having unknown mechanism to suppress LFV, its branching ratio(BR) can be 
detectable

• BR is depending on the models of NPs
• Combination of different CLFV searches can even inspect NP’s internal structure
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Figure 1.6: Feynman diagrams that produce µ-e conversion through New Physics models. The
upper three diagrams ((a) to (c)) all connect to the nucleus via some massive
exchange particle, whereas the lower three diagrams ((d) to (f)) all connect
via an exchanged photon. In addition to interactions with the quarks, since
µ-e conversion interacts with the whole nucleus, there are also models where the
interaction involves external gluon lines.

1.3.2 Muon CLFV Channels

Fig. 1.6 shows a variety of Feynman diagrams for µ-e conversion involving new particles
and couplings predicted by many BSM theories. The large variety of models to which
µ-e conversion would be sensitive makes this a particularly attractive search channel for
New Physics [29].

It can also be seen how complementary the different muon CLFV channels will be.
In the case of leptoquarks for example, shown in Fig. 1.6c, one can expect µ-e conversion
to take place at tree level, whilst generating a signal in a µ+ → e+e−e+ experiment can
only occur via loop diagrams. Similarly, the relative sensitivities between µ+ → e+γ

searches and µ-e conversion searches can be used to pin down what the New Physics is
in the case of a positive observation, or heavily constrain numerous different models in
the case of a null measurement. This is apparent from the fact that New Physics can
be classed as photonic (such as the lower three diagrams in Fig. 1.6) or as a four-Fermi
contact interaction (as in the upper three diagrams in Fig. 1.6). The new physics, which
‘switches on’ at some new mass scale, is integrated away to leave an effective, low-energy
field theory.

The History and Theory of Charged Lepton Flavour Violation (CLFV) 32

��������

10
2

10
3

10
4

Photonic Four-Fermi

0.01 0.1 1 10 100

COMET Phase-I
(extended)

COMET Phase-II

PRISM

COMET Phase-I

SINDRUM-II

MEG

MEG (Previous)

Figure 1.7: Searches for µ-e conversion and µ+ → e+γ have relative sensitivities that depend
on the underlying physics, making the two channels highly complementary. As
shown on the left, New Physics can produce a signal in both channels, but one
channel or the other can be comparatively suppressed due to the need to include
extra vertices and loops. The plot on the right is adapted from [30], based on [31],
and shows the relative sensitivity for the toy lagrangian of equation (1.2) as
a function of κ, how non-photonic the New Physics is, and Λ, the mass scale
assuming coupling strengths of unity.

By constructing a toy Lagrangian consisting of two new interaction terms, one being
photonic and the other a contact term, it is possible to study the relative sensitivities
of µ-e conversion and µ-e gamma searches. The interaction terms in such a Lagrangian
would look like:

L =
1

κ+ 1

mµ

Λ2
(µ̄Rσ

µνeLFµν) +
κ

κ+ 1

1

Λ2
(µ̄Lγ

µeL) (q̄LγµqL) (1.2)

where κ is a dimensionless parameter that determines to what degree the new physics
appears photonic (κ → 0) or four-Fermi-like (κ → ∞).

If the underlying new physics is photonic in nature, then one can expect a direct
search for µ-e gamma to be more sensitive: coupling the photon to the nucleus of an atom
will pick up an extra factor of α, reducing the µ-e conversion rate by about two orders of
magnitude. On the other hand, if the new physics favours interacting directly with the
nucleus, as a four-Fermi contact term, then µ-e conversion would be more sensitive. In
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μ-e conversion in BSM

• μ-e conversion appears in many physics models beyond the standard model (BSM)
• Sensitive to the new physics (NP) independent on models

• Unless having unknown mechanism to suppress LFV, its branching ratio(BR) can be 
detectable

• BR is depending on the models of NPs
• Combination of different CLFV searches can even inspect NP’s internal structure
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Figure 1.6: Feynman diagrams that produce µ-e conversion through New Physics models. The
upper three diagrams ((a) to (c)) all connect to the nucleus via some massive
exchange particle, whereas the lower three diagrams ((d) to (f)) all connect
via an exchanged photon. In addition to interactions with the quarks, since
µ-e conversion interacts with the whole nucleus, there are also models where the
interaction involves external gluon lines.

1.3.2 Muon CLFV Channels

Fig. 1.6 shows a variety of Feynman diagrams for µ-e conversion involving new particles
and couplings predicted by many BSM theories. The large variety of models to which
µ-e conversion would be sensitive makes this a particularly attractive search channel for
New Physics [29].

It can also be seen how complementary the different muon CLFV channels will be.
In the case of leptoquarks for example, shown in Fig. 1.6c, one can expect µ-e conversion
to take place at tree level, whilst generating a signal in a µ+ → e+e−e+ experiment can
only occur via loop diagrams. Similarly, the relative sensitivities between µ+ → e+γ

searches and µ-e conversion searches can be used to pin down what the New Physics is
in the case of a positive observation, or heavily constrain numerous different models in
the case of a null measurement. This is apparent from the fact that New Physics can
be classed as photonic (such as the lower three diagrams in Fig. 1.6) or as a four-Fermi
contact interaction (as in the upper three diagrams in Fig. 1.6). The new physics, which
‘switches on’ at some new mass scale, is integrated away to leave an effective, low-energy
field theory.
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Figure 1.7: Searches for µ-e conversion and µ+ → e+γ have relative sensitivities that depend
on the underlying physics, making the two channels highly complementary. As
shown on the left, New Physics can produce a signal in both channels, but one
channel or the other can be comparatively suppressed due to the need to include
extra vertices and loops. The plot on the right is adapted from [30], based on [31],
and shows the relative sensitivity for the toy lagrangian of equation (1.2) as
a function of κ, how non-photonic the New Physics is, and Λ, the mass scale
assuming coupling strengths of unity.

By constructing a toy Lagrangian consisting of two new interaction terms, one being
photonic and the other a contact term, it is possible to study the relative sensitivities
of µ-e conversion and µ-e gamma searches. The interaction terms in such a Lagrangian
would look like:

L =
1

κ+ 1

mµ

Λ2
(µ̄Rσ

µνeLFµν) +
κ

κ+ 1

1

Λ2
(µ̄Lγ
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where κ is a dimensionless parameter that determines to what degree the new physics
appears photonic (κ → 0) or four-Fermi-like (κ → ∞).

If the underlying new physics is photonic in nature, then one can expect a direct
search for µ-e gamma to be more sensitive: coupling the photon to the nucleus of an atom
will pick up an extra factor of α, reducing the µ-e conversion rate by about two orders of
magnitude. On the other hand, if the new physics favours interacting directly with the
nucleus, as a four-Fermi contact term, then µ-e conversion would be more sensitive. In
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Muon-to-electron conversion
!4

Fate of muonic atom
µ-e conversion

 µ- + (A,Z) → e- + (A,Z)  

single mono-energetic electron

(39% in Al)

(61% in Al)

Eμe = mμ − Bμ − Erec = 104.97 MeV for Al

SINDRUM-II, EPJ C47, 337 (2006)
Br(µ- Au → e- Au) < 7 x 10-13

Current upper limit



Background rejection
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① Decay-in-orbit                     → Detector 

② Beam-related prompt BG   → Beam 

③ Cosmic-ray induced           → Veto



Background rejection (1)
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① Decay-in-orbit             → Detector resolution

�(E	- Eµe)5

EDIO
Log	scale

Eµe

Required momentum resolution

∆p < 200 keV/c 

for 105 MeV/c electrons

Muon decay in orbit

Intrinsic physics background

DIO
Signal

Simulation



Background rejection (2)
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② Beam-related prompt BG   → Pulsed Beam

✓ Long muon beam line 
- reduce π contami. 

✓ Pulsed beam 
- prompt vs. delayed 

➡ Delayed-timing measurement

Cf.) τµ(Al) = 0.9 µsec

• Radiative pion capture, π- (A,Z) → (A,Z-1) γ,  γ → e+ e- 
• Muon decay in flight, pµ > 75 MeV/c 
• Anti-proton induced, etc.

correlated with beam timing}

Y. Fujii, Windows on the Universe, QuiNhon, Vietnam, 2018

Requirements

5

*Extinction =
Number of protons between 2 bunches

Number of protons in a bunch

nucleus

μ-

e-

ν

ν

• High statistics 
• >10

18
 of stopping muons are required

➡ High intensity proton beam & Effective muon production/collection
• Background suppression 

• Intrinsic BG: Muon DIO (Decay In Orbit)
➡ Good momentum resolution=Less multiple scattering

• Beam BG: Radiative π capture, π/μ decay in flight,  Antiproton, Proton leakage, etc.
➡ Pulse beam + off-time measurement, strong pion suppression
➡ Good extinction* factor (<10

-10
)

• Other BG: Cosmic ray
➡ Adding veto detector

1.2 µs

muon beam is contaminated by a lot of pions, and the momentum is spreading in a wide range.

# Lifetime of the muonic atom should 
be comparable to the pulse interval



Background rejection (2)
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② Beam-related prompt BG   → Pulsed Beam

✓ Long muon beam line 
- reduce π contami. 

✓ Pulsed beam 
- prompt vs. delayed 

➡ Delayed-timing measurement

• Radiative pion capture, π- (A,Z) → (A,Z-1) γ,  γ → e+ e- 
• Muon decay in flight, pµ > 75 MeV/c 
• Anti-proton induced, etc.

correlated with beam timing}
muon beam is contaminated by a lot of pions, and the momentum is spreading in a wide range.

Leaked proton
Prompt BG

✓ Extinction factor <10-10

Rext =
# of protons in between pulses

# of protons in pulses

# Leaked protons are dangerous to make the beam BG in the timing window.



Background rejection (3)
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③ Cosmic-ray induced           → Veto

Figure 9.1: The Cosmic-Ray Veto System covering the CyDet and Bridge Solenoid areas.

Figure 9.2: The Cosmic-Ray Veto System drawing.

9.0.2 Strip design

Each strip is equipped with a 1.2 mm diameter wavelength-shifting (WLS) fibre in a central
groove. The fibre is glued into the groove with a special gel, which assures good optical contact
between the scintillator and the fibre and hence increases the light collection e�ciency.

153

• Cosmic rays may create 105-MeV electrons that come into a detector and make trigger. 
• To avoid these CR induced BG, detector region have to be covered by veto counters. 
• Required performance:    CRV inefficiency ~ 10-4  

• CR background ∝ data taking time  (→ shorter running time with higher beam intensity is better)

Figure 12.19: Some cosmic event displays with 4000 events overlaid (left) and 13000 events overlaid
(right). Cosmic rays were generated so as to pass through the whole COMET experimental hall
volume.

Figure 12.20: One of the cosmic ray events which escapes the detection by the CRV and enters the BS
region, creating an electron reaching the CDC. The same event shown for the whole detector region
(left) and a zoomed view (right).

further reduced.

229



The COMET Experiment
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COMET Collaboration

S.Mihara, J-PARC PAC Meeting, 16/Mar/2012

COMET Phase-I
Proto-collaboration
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• 25 institutes
• 11 countries
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COMET Collaboration Increasing...
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Flag National emblem

Anthem: 
Дзяржаўны гімн Рэспублікі Беларусь (Belarusian)

Dziaržaŭny himn Respubliki Bielaruś
(English: State Anthem of the Republic of Belarus)

Location of Belarus  (green)
)  –  [Legend]

Minsk
53°55!N 27°33!E

Belarusian
Russiana

Belarusian

83.7% Belarusians
8.3% Russians
3.1% Poles
1.7% Ukrainians
0.1% Jews
0.1% Armenians
0.1% Tatars
3.0% Other

Belarusian

Presidential republic[1][2]

Belarus
From Wikipedia, the free encyclopedia

This article is about the European country. For other uses, see Belarus (disambiguation).
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Proton beam for COMET
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Proton Beam Extinction for COMET
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The COherent Muon to Electron Transition 
(COMET) experiment

Proton Beam for COMET

• Background rate needs to be low in order 
to achieve sensitivity of <10-16.

• Extinction is very important.  

– Without sufficient extinction, all 
processes in prompt background 
category could become a problem.

0.7sSpill time

5.3x105Bunches per Spill

1.2x108Protons per Bunch

100nsBunch Length

10-9Extinction

1.3 µsBunch Separation

Bunch Structure

• Muonic lifetime is dependent on 
target Z.  For Al lifetime is 880ns.

Proton Beam for COMET

proton beam extinction = (protons between the 
pulses) / (protons in the pulse)

COMET requirement : extinction < 10-10

• COMET dedicated operation 
- Energy:  8 GeV 
- Pulsed beam:  1.17-µsec interval 
- 3.2 kW for Phase-I 
- 56 kW for Phase-II 

• Obtained Extinction 
-  = 10-12~10-11 @ FX abort 
- Good enough for COMET

Figure 4.7: Extinction levels measured at the MR abort line with single bucket filling with the number
of protons equivalent to that of 3.2 kW operation, as a function of the applied RF voltage during beam
circulation after acceleration.

can be seen. Further studies will continue in collaboration with the J-PARC accelerator group
to understand the mechanism behind this e�ect and to ensure delivery of the beam quality
necessary for the COMET experiment.

4.2. Proton beamline

The COMET experiment is built in the NP Hall, commonly called the ‘Hadron Hall’. In addition
to the existing beam line (A-line) from the MR, a new beam line is being built (B-line). The
B-line serves both high-momentum (up to 30 GeV) experiments and COMET (8 GeV) and have
two branches: one from the A-line, and a second between COMET and the high-momentum
experiments. During the standard high-momentum running the A-line and B-line share the
beam in the ratio of 10,000:1. In the low-momentum running for COMET the entire beam is
sent to the B-line. The schematic of the beam lines are shown in Figure 4.9. It is noted that
the proton beamline is common for COMET Phase-I and Phase-II.

4.2.1 Branch between A- and B-line

To realize multiple operation modes, a Lambertson magnet followed by two septum magnets
are deployed to provide the A/B-line branches. Figure 4.10 shows the cross section of the
Lambertson magnet for the new beam line. The beam for the A-line passes through the lower
hole that is free from any magnetic field. The upper hole is filled with a dipole field and is
used for the new B-line. During COMET operation, the entire beam passes through the upper
hole. In contrast, during the operation of the high-momentum beam experiments, only a small
fraction of the beam is sent through the upper hole. A magnetic field of 0.36 T will introduce a
bend of 2.51¶ and is applied with 470 A in the coils (at 26 V) during COMET operation. The
field uniformity in the dipole field region has been simulated and non-uniformities in the field
are expected to be smaller than 0.1% in the region of ±36 mm from the beam axis.
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Cf.) Requirement < 10-10

� �Bunched Slow Extracton

1.17μs 1.75μs

100 ns

エネルギー 8GeV

パワー 3.2 (1.44) kW

陽子 / バンチ
陽子 / ショット

1.6 x 107

6.2 x 1012

サイクル
取出し時間

2.5 (5.2) 秒
0.5秒

9バケツのうち、4個にビームをfill

ビームの時間構造



Beam line
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Hadron Hall

A-line

B-line

MR

COMET Primary Beamline

A-line

B-line

Lambertson magnet

high-p line

COMET line

D-magnet

A-Line

High-p 
BL

COMET 
BL

B-line 
under construction

COMET experimental hall 
built in 2015

• New beam line & experimental hall were constructed. 
• Bunched Slow Extraction (BSX) 

- keeping bunch structure to realize the pulsed beam.



High-intensity muon source
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‣ Long production target 
‣ Capture solenoid 

• Backward generated pion → muon 
‣ Curved Transport solenoid 

• Vertical drift → Momentum & charge selection

Powerful muon source is mandatory !!

Demonstrated at MuSIC

MuSIC @ RCNP, Osaka U

To achieve 10-17 sensitivity, 

~1011 muons/sec   
(with 107 sec running time.)

Begining of Torus 90 degree

]cMomentum [MeV/
0 100 200 300 400 500 600

)c
 c

ou
nt

s/
(M

eV
/

11−10

10−10

9−10

8−10

7−10

6−10

5−10

4−10

3−10

2−10

1−10
muon-

muon+

electron

positron

pion-

pion+

neutron

proton

gamma

Begining of Torus 90 degree

Figure 5.3: Momentum distribution of various beam particles at the end of the pion capture solenoid
section, moving to the muon transport section. For the hadron production, GEANT QGSP BERT was
used.
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Figure 5.4: Adiabatic transition from a high magnetic field to a low magnetic field. This adiabatic
transition is executed by reducing the magnetic field. As a result, the magnitude of transverse mo-
mentum is reduced.

5.3. Muon Beam Transport

Muons and pions are transported to the muon-stopping target through the muon beam trans-
port, which consists of curved and straight superconducting solenoid magnets. The require-
ments for the muon transport section are

69

Capture solenoid
Transport solenoid

gradient magnetic field

• the muon transport should be long enough for pions to decay to muons,

• the muon transport should have a high transport e�ciency for muons with a momentum
of ≥ 40 MeV/c, and

• the muon transport should select muons with low momentum and eliminate muons of
high momentum (pµ > 75 MeV/c) to avoid backgrounds from muon decays in flight.

The justification for the first of these criteria should be obvious. For muons to stop and be
captured in the stopping target their momentum must not be too high, but it must be high
enough that they make it to the target. This defines an optimal momentum to be around
40 MeV/c. Muons with higher momentum are less likely to be stopped, as well as giving rise
to another background. Decays in flight of these muons produce electrons that are boosted in
the lab frame, resulting in an electron background in the signal region near 105 MeV. Positive
muons (which cannot be captured) are another potential source of background. In conjunction
with momentum selection, a curved solenoid transport helps eliminate all these as described
below.
The selection of an electric charge and momenta of beam particles can be performed by using
curved (toroidal) solenoids, which makes the beam dispersive. A charged particle in a solenoidal
field will follow a helical trajectory. In a curved solenoid, the central axis of this trajectory drifts
in the direction perpendicular to the plane of curvature. The magnitude of this drift, D, is
given by

D = 1
qB
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where q is the electric charge of the particle (with its sign), B is the magnetic field at the axis,
and s and R are the path length and the radius of curvature of the curved solenoid, respectively.
Here, s/R (= ◊bend) is the total bending angle of the solenoid, hence D is proportional to ◊bend.
pL and pT are longitudinal and transverse momenta so ◊ is the pitch angle of the helical
trajectory. Because of the dependence on q, charged particles with opposite signs move in
opposite directions. This can be used for charge and momentum selection if a suitable collimator
is placed after the curved solenoid.
To keep the centre of the helical trajectories of muons with a reference momentum p0 in the
bending plane, a compensating dipole field parallel to the drift direction can be applied. If a
compensating dipole field given by

Bcomp = 1
qR

p0

2

3
cos ◊0 + 1

cos ◊0

4
, (5.6)

is applied, the trajectories of negatively charged particles with momentum p0 and pitch angle
◊0 will be corrected to be on-axis.
The COMET Phase-I beamline uses one curved solenoid with a bending angle of 90¶. To keep
the centre of trajectory of the low energy muons, a compensating dipole field of about 0.05 T
will be used.

5.4. Muon Beam Collimator System

In order to remove positive charged particles and high momentum particles that might con-
tribute to backgrounds, particularly pions, while retaining as many muons as possible, a muon
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Pulsed Muon Beam Facility  
(in construction)

• MLF H-Line @ J-PARC MLF 

• COMET 

• Mu2e

> 109 
μstops/sec�
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Phys. Rev. Accel. Beams 20, 030101 (2017). 



COMET Phase-I
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Physics measurement  → CyDet 
• µ-e conversion search, SES: 3×10-15 (×100 improve), 150 days running 
Beam measurement     → StrECAL 
• to understand beam quality and background  (PID, momentum, timing)

CyDet and StrECAL 

for COMET Phase-I

Y. Fujii @ CLFV2016

COMET Phase-I

10

StrECAL

Straw Tube Tracker

ECAL

• Construct the first 90 degree of the muon transport solenoid
• Perform the μ-e conversion search with a sensitivity of 10

-15
 using CyDet

• Measure the beam directly using StrECAL as a Phase-II prototype detector

CyDet

Cylindrical Drift Chamber

Trigger Hodoscope

Muon Stopping Target

CyDet

StrECAL

proton beam

µ ←
 π

Capture Solenoid

90-deg 

Transport 

Solenoid

Detector Solenoid

8 GeV, 3.2 kW

Production Target

(Graphite)

Goal of Phase-I



COMET Phase-II
!16PAC Review - General Recommendations

Phase-II Simulations, 9 Jan. 2016 Ben Krikler: bek07@imperial.ac.uk10

Muon Beam

proton beam

Capture Solenoid

Transport Solenoid

Muon 

Stopping 

Target

Electron Spectrometer Solenoid

StrECAL 

Detector

8 GeV, 56 kW

Production Target

(Tungsten)

• SES:  2×10-17 (×10,000 improve) 
• Beam:  56 kW 
• 1 year running



Recent Status
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Proton Beamline Construction

COMETHigh-p

Beamline Construction, See Prof. Sawada’s presentation, for more details

Beam line construction
!18

2017/Sep.
2018/Jan.

View from here

Hadron Hall

Beam line wall construction was completed.



Solenoid magnet status
!19

Solenoid Magnet System

• Capture solenoid: Coil winding & cold mass assembly in progress. Cryostat design ongoing 

• Transport solenoid: Installed and ready for cryogenic test 

• Bridge & detector solenoids: design in progress. 

• Cryogenic System: Refrigerator test completed. Helium transfer tube in production

Transport 
Solenoid

• Capture solenoid:  
- Coil winding & cold mass assembly in progress. Cryostat design ongoing.  

• Transport solenoid:  
- Installed and ready for cryogenic test  

• Bridge & Detector solenoids:  
- DS coil ready. Cryostat design in progress. 

• Cryogenic System:  
- Refrigerator test completed. Helium transfer tube in production 

Solenoid Magnet System

• Capture solenoid: Coil winding & cold mass assembly in progress. Cryostat design ongoing 

• Transport solenoid: Installed and ready for cryogenic test 

• Bridge & detector solenoids: design in progress. 

• Cryogenic System: Refrigerator test completed. Helium transfer tube in production

Transport 
Solenoid

CS coil winding

Y. Fujii, Windows on the Universe, QuiNhon, Vietnam, 2018

Magnets/Cryogenics

• Pion capture solenoid 
• Coil winding almost done
• Mechanical design completed

• Muon transport solenoid 
• Completed, detailed tests are 

ongoing
• Detector solenoid 

• All 14 coils assembled as one
• Cryogenics 

• Engineering design is in 
preparation
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Al stabilized SC wire Coil winding

Transport Solenoid Detector Solenoid

Transport Solenoid 2015



CyDet system
!20

1 T
µ

e Stopping
Target
(Al discs)

CDC

1.5 m

1 m

Detector for µ-e search in Phase-I

CyDet Geometry 

2015/12/16 4 

1mm CFRP 

Option D is used for CTH 

Figure 7.49: Cutaway showing layout of the CTH in the CyDet detector. The red pannels are plastic
scintillators, and the green pannels beneath the scintillators are Cherenkov counters made of lucite.
An example track is also shown.

Optimization of length The length of the CTH counter has been optimized to maximize the
geometrical acceptance. With the total length of the CDC fixed, a longer CTH results in the
fiducial region (the central region where tracks enter the CDC) being shorter. Therefore, the
CTH length has to be optimized taking this acceptance of the fiducial region into account.
Figure 7.53 shows geometrical acceptances for µ≠e conversion signal events, which were gener-
ated according to the simulated muon stopping distribution with electrons emitted isotropically.
The blue and red points show single-turn tracks and multiple-turn tracks respectively. The sum
of single- and multi-turn acceptance is shown with black points. The geometrical acceptance
was evaluated by the numbers of triggered events, which are also described in Section 7.2.4.
The requirements for geometrical acceptance are given in Section 12.1.1. It is concluded from
Figure 7.53 that the optimal length for the CTH is 30 cm.

7.2.2.3 Support Structure

A drawing of the CyDet and a schematics of the support structure of the trigger hodoscope
are shown in Figs. ?? and 7.54. This support structure not only supports the modules but also
isolates them from the helium gas that surrounds the muon stopping target. Helium gas causes
degradation of PMTs due to increased after-pulsing. For this reason, the support structure
is designed to be helium-tight. EVOH (ethylene vinyl alcohol) film and aluminized mylar are
candidate materials for the helium barrier. In addition to the barrier, dry air will be pumped
around the PMTs to flush out any helium gas. We plan to test the quality of the helium shield
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CDC (Cylindrical Drift Chamber) 
• electron tracking in 1 T 
• Δp = 200 keV/c  (for p=105 MeV/c) 
• Low-mass chamber 

- He:i-C4H10 (90:10)  
- 0.5-mm CFRP inner wall 
- Al field wire, 126µm, 4986 
- Au-W sense wire, 25µm, 14562 

• Alternating all stereo layer 
- 20 layers, ±64~75 mrad 

CTH (Cylindrical Trigger Hodoscopes) 
• Scintillator & Acrylic Cherenkov 
• Finemesh PMT readout 
• 4-fold coincidence trigger 

Stopping Target  
• Al target consists of 17 discs  
• 100-mm radius, 0.2-mm thickness, 50-mm spacing.

Al target discs



Figure 7.50: Schematic layout of the trigger hodoscope modules for both upstream and downstream,
showing one segment each of scintillator and Cherenkov radiator.

CyDet Geometry 

2016/1/7 3 

Figure 7.51: Detailed layout of the hodoscope rings. Counters are tilted and located shifting half
width so that four-fold coincidence with the neighboring counters can be required, in order to reduce
accidental coincidence.
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Figure 7.54: CAD image of the support structure.

7.2.3 R&D

7.2.3.1 Results of Prototype Tests

A beam test using 155 MeV/c electrons was carried out to evaluate detector performance with-
out a magnetic field. The front-end boards were not yet available, therefore the signals were
processed with a stand-alone waveform digitizer. Figure 7.55 shows typical waveforms mea-
sured in the beam test. The corresponding pulse height distributions are shown in Figure 7.56.
As expected, the scintillator modules produce more light than the Cherenkov modules. Higher
light yields are also recorded for the upstream modules, which have shorter light guides. For
all four modules types, the readout met the required S/N ratio.
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Figure 7.55: Waveforms from the Cherenkov detector (left) and the scintillator (right).

Figure 7.57 shows the distribution of the di�erence in detection time between the Cherenkov
detector and the scintillator (Both were arranged closely so that the electron beam hit both
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CyDet status

CDC cosmic-ray test is ongoing in KEK. 
Good performance was obtained.

!21

7.1.7 Results from Cosmic-ray Tests

A performance evaluation test using cosmic rays started in summer 2016 after the completion
of the CDC. Stable operation of the CDC is achieved with He:i-C4H10 (90:10) gas mixture and
with applied high voltage up to 1850 V. Figure 7.46 shows typical event displays where a clear
cosmic-ray track can be drawn. From the deviation of drift distance from the distance of closest
approach between a hit wire and a reconstructed track, a residual distribution is obtained in
Figure 7.47(a). A position resolution is derived to be 170 µm including a tracking uncertainty.
Hit e�ciency is defined as a fraction of hit events which have the residual within ±3‡ to total
reconstructed tracks. The hit e�ciency increases with the applied high voltage as shown in
Figure 7.47(b), and comes up to 95% at 1850 V.
The cosmic-ray test is ongoing as of the end of 2017 with step-by-step upgrade. The preliminary
results obtained so far demonstrate a good performance as expected. Detailed analysis results
will be reported in a separate paper.
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(a)  Event Display (b)  Zoom view
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Figure 7.46: (a) Typical event display of CDC cosmic-ray test. (b) Zoom view of the event display.
Hit wires are marked with red circles whose radii correspond to the drift lengths.
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Figure 7.47: (a) Residual distribution for the layer-10 at 1825 V. The distribution is fitted with a
Gaussian. (b) Hit e�ciency for applied high voltages.
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Preliminary

Figure 7.18: 128 COMET CDC readout electronics boards.

7.1.2.4 Radiation Tolerance

The RECBE boards will be located at the downstream of the CDC detector, so they will be
exposed to the high radiation fluence from the beam line and the target. The study of the
radiation tolerance is summarized in chapter ??.

7.1.3 Infrastructure

7.1.3.1 Gas

The present COMET gas system for CDC is designed based on that for the BELLE II CDC.
Separate pure gas bottles are located in a gas stock booth outside. Gas mixing is performed
using two mass flow controllers on the ground floor in the COMET building. Four gas bottles for
each gas component are connected to the pressure regulators, and exhaust ports are prepared
with a diaphram valves to avoid air contamination when the bottles are replaced. Only the CDC
detector and a bu�er tank with a pressure gauge are located in the underground experimental
room. The other gas equipments and devices are on the ground floor to avoid the radiation
damage on the electronics. The gas is fed into the detector though a metal gas pipe. The
gas system consists of a circulation pump, flow controllers, pressure controllers, oxygen filters
and monitors, a humidity monitor and three bu�er tanks in the circulation line as shown in
Figure 7.19. The schematic view of the COMET building can be seen in Figure 14.2. Some
amout of flow rate (e.g., 2 liters/min) is required to remove oxygen e�ciently from the CDC
gas volume. An oil-free metal bellows pump is used to circulate the gas. A small amount of
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Figure 7.63: A visual representation of the neighbour-level GBDT applied to the event shown in
Figure 7.62. The locations of the hits are shown by the outlines of the hits. The fill is scaled with the
output of the GBDT, where a full circle corresponds to a signal-like response.

(a) Points in (x, y) space, blue, thought to be on a circle,
red, whose centre lies at the origin, orange.

(b) A mapping from the points in (x, y) space, blue, to
possible circle centres in (a, b) space, green.

Figure 7.64: Demonstration of a circular Hough transform.

Reweighted Forward Hough Transform While local and neighbour features alone yield
promising results, there are still some isolated clusters of misclassified background hits, as
well as a diminished response for isolated signal hits. To correct this, a circular Hough trans-
form is used on the output of the GBDT to determine which hits lie in a circular pattern with
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All 120 CDC FE boards were fabricated, 
and QA was finished in IHEP.

High-level track trigger 
- Software-level algorithm was 

already established.  
- can reduce background hits into 

1/20 while retaining 99% of 
signals. CTH structure prototype 

is under construction.

センス

フィールドfor field wire

for sense wire

Figure 7.12: Feedthrough for the CDC.
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Power�
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DAQ/IF+
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Trigger/IF�

FPGA�

Figure 7.13: The COMET CDC front-end readout board

Size 200 ◊ 170 mm2

Thickness 1.838mm (16layers)
Power supply +5.5V, +3.8V, +2.0V, +1.5V
Power consumption 12.5W

Table 7.4: The specification of the COMET CDC readout board.

board, and sends a busy signal to stop receiving triggers if the bu�er is full. The CDC block
arranges data of drift time and dE/dx from digitized values by the TDC and ADC. SiTCP is
used to transmit the event data to the DAQ system via Gigabit Ethernet fiber link. TCP/IP
provides end-to-end reliable connectivity. The Reg block, which is responsible for configuration
and status, can be accessed through UDP communication. The SYS MON block is used for
status monitoring of the board, such as temperature and voltage monitor.

Table 7.5: Operation clocks in the FPGA firmware functions.
System Clock 120 MHz
TDC Time Resolution 1.0416 nsec (960 MHz)
ADC Sampling Rate 30 MHz
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StrECAL system
!22

Straw Tube Tracker 
• Operational in vacuum in 1 T 
• Δp = 150~200 keV/c  (for p=105 MeV/c) 
• Straw tube 
- 20 µm thick, 9.75 mm diameter for Phase-I  
- 12 µm thick, 5 mm diameter for Phase-II 

• 5 stations (xx’yy’×5) 
• Ar:C2H6 (50:50) 

Electron Calorimeter 
• 1,920 LYSO crystals 
- 2×2×12 cm (10.5 radiation length)  

• ΔE/E = 5%  (for E=105 MeV) 
• 40-ns decay time 
• APD readout

Detector for beam measurement in Phase-I, 
and µ-e search in Phase-II
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FIG. 58: Measured gas leakage (a) Pressure drop inside the straw tube as a function of time after it is over-pressurised to 2
bar, (b) Pressure build-up as a function of the time after pump close.

to the full spectrometer, is well within what is needed to keep pumping rates at modest levels.

Electrical shielding is also confirmed with this prototype.
It was operated with several gas mixtures and irradiated by the x-ray from 55Fe source. By changing the applied

HV, the gas-gain is measured and the normal gas amplification confirmed.
These results from the single-straw prototyping validate the employment of the newly developed 20-µm wall-

thickness straw for COMET Phase-I.
Full-scale prototype A second prototype, the “full-scale prototype”, has similar dimensions to the final tracker

station but with fewer straws. It has six straw-tube planes, three for the x-coordinate and three for the y-coordinate
with each coordinate read out by 16 straw tubes. Figure 59 shows the partially completed prototype

FIG. 59: The Full-scale prototype, partially completed without the vacuum wall

The 20-µm wall-thickness straws are mounted using the newly developed feedthrough system and the entirety of
the exterior is covered with a vacuum wall so that it can be evacuated allowing the behaviour in vacuum to be
investigated. The prototype is constructed of aluminium so that it will not be a↵ected by magnetic fields.

It has been operated in a 50-300 MeV/c electron test beams at the Research Center for Electron Photon Science
(ELPH), Tohoku University.

Figure 60 shows the measured single straw detection e�ciency for the Ar:C2H6(50:50) gas mixture as a function of
applied HV. Figure 60 shows that a voltage higher than 1800 V, guarantees full e�ciency for a single straw although
gaps between straw tubes [47] can lead to a small overall e�ciency loss.

Figure 61 shows the residual distribution for tracks. A spatial resolution of 143.2 µm for the gas mixture of
Ar:C2H6(50:50) and HV of 1900 V is obtained. This contains the uncertainties arising from the precision of track

55

FIG. 69: A vacuum chamber for the prototype ECAL system.

(SiPM) which is mounted on the strip with a special plastic connector to fix its position and guarantees a small air
gap to the fibre.

The proposed strip design has the following advantages over a wider strip with several WLS fibres:

• Light from a MIP is not shared between di↵erent SiPMs resulting in a very high e�ciency even with a high
signal threshold.

• The e�ciency of each strip can be measured using coincidences with other strips.

• In case of problems with one channel only a small part of the detector is a↵ected.

• A time resolution of about 1 ns can be achieved.

To form each module, both sides of a set of 15 strips are glued to a 1.5mm-thick plastic support. The layers are
shifted by 2mm in x in order to avoid alignment of gap positions (see Figure 72). This is repeated for the next two
layers, which are shifted by about 3 cm in z to avoid dead zones between super-modules. All four layers will be covered
by black plastic to protect strips from external light sources.

Modules are fixed inside super-modules which will be connected with shifts of layer positions to avoid dead zones.
There are three types of inactive zones: inter-strip gaps, inter-module gaps, and gaps between layers. These gaps

were included in the simulation, which demonstrated that, despite the inactive zones, muon detection e�ciency meets
the integrated value of 99.99 %. Some dead time may result from random coincidence of SiPM noise signals occurring
in two layers within the spatial and time resolution range .

Neutron shielding The neutron flux in the experimental hall can cause problems for the cosmic veto system by
introducing noise signals and causing radiation damage to the SiPMs. The neutrons originate from the pion production
target (above 1 MeV) and the beam dump (below 1 MeV).

Thee dark current of the SiPM increases after irradiation above 108 neutrons/cm2 [48], causing noisy response.
However as the decrease in the SiPM gain is about 50% even after 7⇥1011 neutrons/cm2 irradiation [48], the detector
e�ciency can be retained by adjusting the threshold. It has been shown, that operating with a threshold level above
7 pixels keeps the fraction of dead time at the few percent level whilst, even at an 11-pixel threshold, the muon

Straw Tracker prototype ECAL prototype



StrECAL status
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Y. Fujii, Windows on the Universe, QuiNhon, Vietnam, 2018

StrECAL

• Based on StrawTubeTracker and Electron calorimeter, Beam profiling in Phase-I, Physics measurement in Phase-II
• StrawTracker 

• 20/12μm thin straw tubes operational in vacuum, for Phase-I/II
• Precise position/momentum measurement (σx<200μm, σp=150-200keV/c @105MeV/c e-)
• Mass production of phase-I Straw tubes was completed, ready for the detector construction!

• ECAL 
• Array of 2,000 LYSO crystals
• Fast decay time (~40ns), good energy resolution (<5% @105MeV/c e-)
• Performance study is almost completed, start purchasing the crystals

12

signal lines

HV lines

front-end boards

gas inlet

gas outlet

gas manifold

20mm

20mm
120mm

ECAL Prototype overview

May 19, 2016 19th COMET CM : ECAL Prototype Status 4

ECAL modules

Vacuum gauge

Vacuum Pump

Straw Chamber Studies

Straw production for Phase-I

completed 

Preparation of final assembly

thermal study of FE in gas 
manifold 

Cooling of FE electronics

gas cooling 

Detector Assembly

Garfield++ simulation updated

Tracking study

R&D of Phase-II straw at JINR


12 µm thick, 5 mm diameter  

20 µm thick, 9.75 mm 
diameter for Phase-I

Design work for final tracker station
4

✤ Finally COMPLETED !!!

General Dimension w/ FE boards configuration

Hajime NISHIGUCHI (KEK)                                                              ”Straw”  　                                                                            COMET CM25, J-PARC

Initial production of 12 µm 
thick, 5-mm diameter tubes

Testing 12 µm tapes 

X In sum we tested 50 samples 

The first 5 mm in diameter tubes with a thickness of 12 μm were made and tested

10mm and 5 mm straw tubes Tube welding processStrECAL Beam Test at Tohoku

ECAL Performance (since the last PAC)

• Energy resolution

• 4.4% @ 105 MeV/ 

• Position resolution

• <10 mm @105 MeV/c 

• Timing resolution

• ~ 0.2 nsecKou Oishi / Kyushu University, JapanCOMET-CM25 @ J-PARC, Ibaraki, Japan / 22nd May 2018

ECAL Performance (2)

Position resolution satisfies the requirement of 1 cm 
✦ In wide momentum range: 60 - 185 MeV/c. 

Time resolution also better than the requirement of 1 nsec. 
✦ Intrinsic resolution was estimated ~ 0.2 nsec. 
✦ The triggering & readout electronics are predominantly effective.
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p1        0.00244± 0.748 

Timing Resolution (ECALTOft2H5)
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 / ndf 2χ  10.3 / 7
p0        0.219± 1.26 
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Total
ECAL

ECAL Time Resolution

Kou Oishi / Kyushu University, JapanCOMET-CM25 @ J-PARC, Ibaraki, Japan / 22nd May 2018

ECAL Performance (1)

Clustering was optimized. 
✦ Noise cutting threshold 
✦ Clustering window size 
✦ etc. 

Energy resolution 
✦ Achieved the requirement of 5% @ 105 

MeV. 
✦ Now evaluating systematic errors.
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Energy spectrum

StrECAL Beam Test at Tohoku:

Straw Performance (since the last PAC)

• XT curves for two gas mixture:

• Ar:Ethane=50:50 and Ar:CO2=70:30 

• Position Resolutions 
• Residual of position of XT curve from the reconstructed track. 
• Position resolutions for Ar:Ethane (<150 µm) but Ar:CO2 (<150 µm) 

which has been improved since last time.

Kou Oishi / Kyushu University, JapanCOMET-CM25 @ J-PARC, Ibaraki, Japan / 22nd May 2018

Intrinsic Position Resolution?

Effect to the intrinsic position resolution  
✦ Effect from multiple scattering is negligibly small < 10 µm 
✦ Effect from misalignment within 100 µm is negligibly small < 1 µm 
✦ Time resolution < ~ 1 nsec 

★ Depending on drift velocity, but at most ~ 50 µm in drift distance region of 0.1 - 0.4 cm 

✦ Tracking resolution can be calculated ~ σintrinsic+time / √2. 
✦ As a conclusion, very roughly, σexp. / (1 + 1/√2) is the position resolution of single straw tube.
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Straw tube production for 
Phase-I was completed. Thermal study of FE in gas manifold 

was carried out. 
Straw station assembly will start soon. 

Buying procedure of ~500 LYSO 
for Phase-I is ongoing.

Straw:  
position resolution < 150 µm

ECAL:  
ΔE/E < 4.4% @ 105 MeV

Kou Oishi / Kyushu University, JapanCOMET-CM24 @ Osaka Univ., Japan / 31st Jan. 2018

Detectors (1)
Full scale straw tracker prototype 
✦ Again from the beam test in 2015&2016. 
✦ Readout by daisy-chained ROESTIs. 
New ECAL prototype 
✦ Developed by H. Yamaguchi. 
✦ Improved by the experience in the last 

experiment. 
✦ New preamplifier prototype. 
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Figure 11.33: Full-scale prototype; (Left) Partially completed without vacuum wall, (Right) Whole
view of the completed full-scale prototype

2016, with the various momentum electron beam. The setup for the beam test is schemati-
cally shown in Figure 11.34 (Left), and its photo is also shown in Figure 11.34 (Right). Here

Figure 11.34: Test-beam setup; (Left) Schematic view of the setup, (Right) Photo of set up viewing
from the upstream.

“BDC” means the “beam-difining counter” which consists of bidirectional 1-mm-thick scinti-
fibre counters, and “FC” means the “finger counter” which consists of finger-size 1-mm-thick
thin plastic schintillator counters. Trigger signal is made by the coincidence between two FCs
and “TC” (Timing Counter) which consists of high light yield plastic scintillator with the fast
fine-mesh PMT to provide the precise timing measurement. The electron beam momenta is
varied between 50-300 MeV/c.
Figure 11.35 shows the measured detection e�ciency for the gas mixture of Ar/C2H6(50/50) as
a function of applied HV. Straw single e�ciency is measured by counting the number of proper
hits in layer-2 and counting the number of tracks in layer-2 which is reconstructed by the hits
in layer-1 and layer-3. As shown in Figure 11.35 (Left), high enough HV, higher than 1800
V, guarantees the full e�ciency. However, due to the small but finite gap between each straw
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Combined ECAL Modules (4x4 LYSOs) ECAL Feedthrough

Full scale Straw tracker prototype

Straw
StrECAL Beam Test @ 2017

Preliminary
Preliminary



8 GeV test & Extinction measurement
!24

8-GeV operation & extinction measurement 
were done at J-PARC in Jan.-Feb., 2018.

12

Reminder: Available Two Measurements with FX and SX

Hajime NISHIGUCHI (KEK)                                                       ”8GeV Campaign”  　　                                                      COMET CM25, J-PARC

Reminder : Available Two Measurements
5

✤ FX : Fast Extraction for Neutrino beam
✤ Abort monitor is installed in front of 

the beam dump to measure extinction
✤ SX : Slow Extraction for Hadron hall

✤ By measuring the secondary beam, 
extinction at hadron hall is measured

FX

SX

•Last measurement
•2014 @MR abort, 8 GeV
•Result:

              Ext. = 10-11 ~ 10-12

COMET R&D Status
• Proton beam study (Extinction 

Measurement)

• Measurement at MR abort line 
(Fast Extraction) and Secondary 
beam line (Slow Extraction)

• Both provided consistent result

• Extinction: (5.4 ± 0.6)!10-7

• Further improvement expected (O
(10-6)) by double injection kicking

• External extinction device 
improves even more (O(10-6))

• US-Japan cooperative 
research program
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•Last measurement

•2010 @ SX, 30GeV

•Result:

         Ext. < 5.4×10-7 

•w/o any treatment 
to improve extinction

• Should be repeated 
with the final condition

1.2!s

Hajime NISHIGUCHI (KEK)                                                       ”8GeV Campaign”  　　                                                      COMET CM24, Osaka
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Extinction Measurement

Extinction with FX 
(at MR-ABD)

Extinction with SX 
(at Hadron)

 By abort monitor with abort shot

 Advantage;
 Can measure quickly
 Can measure w/o SX process

 Disadvantage;
 Cannot measure continuous beam

 Not an actual situation

 By beam counter with secondary beam

 Advantage;
 Most similar with an actual beam
 The way to demonstrate Bunched SX

 Disadvantage;
 Time consuming for statistics

 Difficult to secure the beam time
Hajime NISHIGUCHI (KEK)                                                       ”8GeV Campaign”  　　                                                      COMET CM25, J-PARC

FX abort line

See Hajime Nishiguchi’s talk on Friday

• Campaign was successfully carried out. 
• Extinction was measured by both FX & SX. 
✓ First trial of 8 GeV Bunched SX. 

Rext in Hadron Hall (SX)
• Extracted pulsed proton beam injected to the Hadron Primary 
target and produced secondary beam transport to K1.8 area 

• Secondary beam time structure measurement with a 
hodoscope 

• Proton leakage is appeared in K4_rear only within very early 
extraction timing (<0.1sec) 

• No leakage is appeared in other region 

• By rejecting <0.1sec events, upper limit of extinction is 
obtained: <6.0 x 10-11  

• Good enough for COMET  though we need further studies on 
K4_rear leakage

w/o kicker shift = initial extinction

w/ kicker shift = improved extinction

preliminary

preliminary
Ion Chamber Hodoscope Trig. Counters

!- beam

Hadron hall K1.8 beam line



Sensitivity and Background
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Sensitivity
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Y. Fujii, Windows on the Universe, QuiNhon, Vietnam, 2018

Phase-I Single Event Sensitivity

• 3×10
-15

 S.E.S. achievable in ~150 days of DAQ time corresponds to Nμ=1.5×1016

13

Number of muons stopped inside targets

Fraction of muons to be captured by Al target = 0.61

Fraction of μ-e conversion to the ground state = 0.9

103.6 < pe < 106.0 MeV/c
700 < te < 1170 ns

=  3×10-15

Nµ = 1.5×1016   → 150 days by 3.2 kW

@ Phase-I

@ Phase-II =  2×10-17
1 year by 56 kW 
+ Tungsten production target

+ 180◦ Transport Solenoid

+ Electron Spec. Solenoid

S.E.S



Background estimation
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COMET Phase-I Backgrounds
Table 20.8: Summary of the estimated background events for a single-event sensitivity of 3 ◊ 10≠15 in
COMET Phase-I with a proton extinction factor of 3 ◊ 10≠11.

Type Background Estimated events
Physics Muon decay in orbit 0.01

Radiative muon capture 0.0019
Neutron emission after muon capture < 0.001
Charged particle emission after muon capture < 0.001

Prompt Beam * Beam electrons
* Muon decay in flight
* Pion decay in flight
* Other beam particles

All (*) Combined Æ 0.0038
Radiative pion capture 0.0028
Neutrons ≥ 10≠9

Delayed Beam Beam electrons ≥ 0
Muon decay in flight ≥ 0
Pion decay in flight ≥ 0
Radiative pion capture ≥ 0
Anti-proton induced backgrounds 0.0012

Others Cosmic rays† < 0.01
Total 0.032

† This estimate is currently limited by computing resources.
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Phase-I Single Event Sensitivity

• 3×10
-15

 S.E.S. achievable in ~150 days of DAQ time corresponds to Nμ=1.5×1016

13

Number of muons stopped inside targets

Fraction of muons to be captured by Al target = 0.61

Fraction of μ-e conversion to the ground state = 0.9

103.6 < pe < 106.0 MeV/c
700 < te < 1170 ns

Assuming 

Rext = 3×10-11

BG is small enough

@ Phase-I

@ Phase-II BG is still less than 1 by simulation
to be confirmed by Phase-I Beam Measurement

DIO Signal

Detector

Beam

CR



Summary & Prospects
‣ COMET aims to search for µ-e conversion with sensitivity of 

3×10-15  / 2×10-17  at Phase-I / II. 

‣ Detector & beam line preparation is intensively in progress. 

‣ Detector will be ready in 2019 for Phase-I, and 
commissioning will start soon after completing the 
beam-line construction. 

‣ Phase-II study is also in progress. We are able to optimize 
the Phase-II parameters based on the coming Phase-I results.
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