

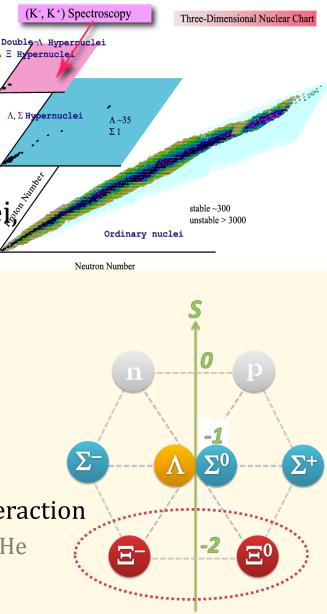
J-PARCにおけるEハイパー核分光実験の 実験計画

<u>森津学</u>、永江知文、高橋俊行^A、藤岡宏之 京大理、高エ研^A 他 J-PARC E05 (AXiS) Collaboration

日本物理学会第66回年次大会@新潟大学 2011/03/26

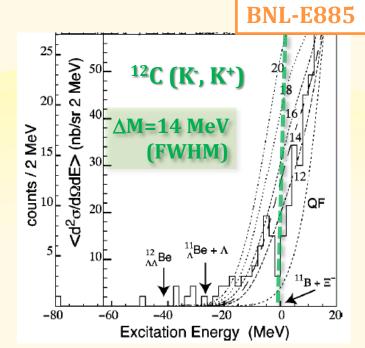
Contents

- 1. Introduction
 - Ξ-hypernuclei
- 2. J-PARC E05 Experiment
- 3. Recent discussion on experimental plan
 - Setup modification for low intensity beam
- 4. Summary


Introduction

<u>S = -1</u>

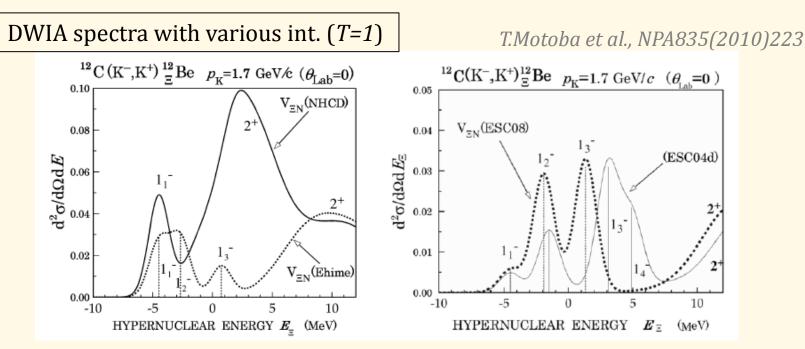
- So far, we know Λ-N interaction well extracted from structure of Λ-hypernuclei, including spin component.
 - (π,K) reaction with SKS
 - γ-ray spectroscopy with Hyperball
- successful theoretical understanding.


<u>S = -2</u>

- Information is very limited.
 - $\Lambda\Lambda$ -hypernuclei => weakly attractive Λ - Λ interaction
 - ex.) NAGARA event : unique ID of species, ${}^{6}_{\Lambda\Lambda}$ He
- - No definite evidence for a bound state.
 - There were several experiments using (K⁻,K⁺) reaction.

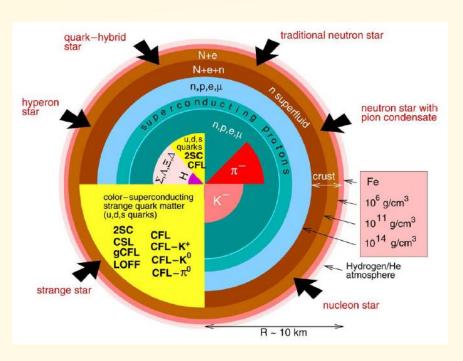
S=-2

三-hypernuclei: previous experiment

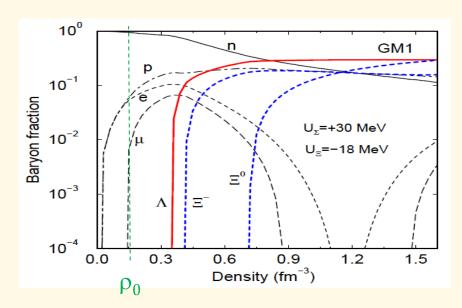

P.Khaustov et al., PRC61(2000)054603

- Previous experiment : BNL-E885
 - not clear evidence of Ξ -hypernuclear bound state.
 - because of limited mass resolution
 - suggest weakly attractive potential of -14 MeV depth.
 - by shape analysis of QF-tail
 - almost unique information on Ξ -hypernuclei up to now

Ξ-hypernuclei : theoretical models


- Various B-B interaction models exist.
 - Their predictions are quite different for Ξ -N int.

Experimental information is strongly awaited.



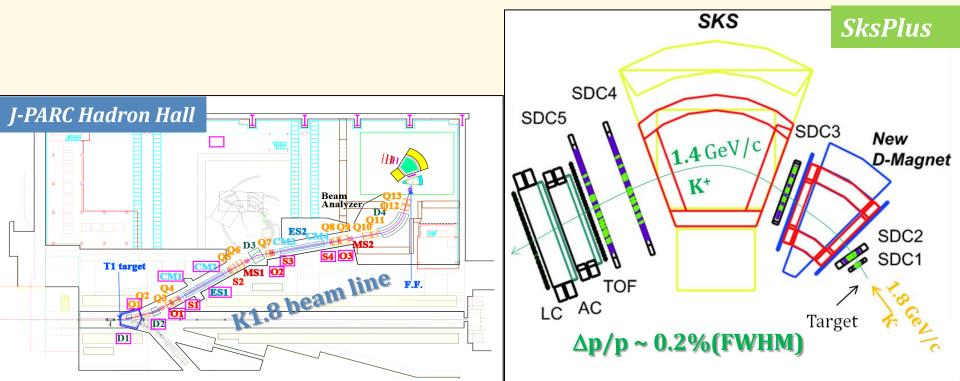
Ξ-hypernuclei : appearance in N.S ?

- Strangeness in dense nuclear matter
 - Inspect into the core of neutron stars
 - Strangeness will take the key role

If Ξ -N is attractive (U_{Ξ} ~-18MeV), Ξ will appear next to Λ in neutron stars.

J.Schaffner-Bielich, NPA804(2008)309

F.Waber, PPNP54(2005)193

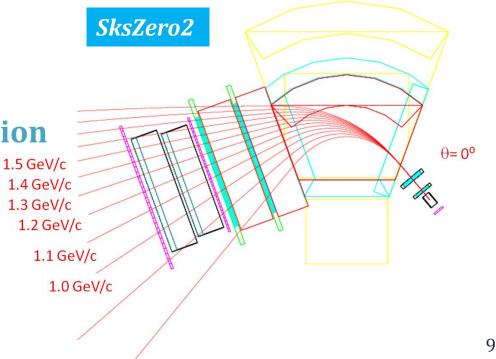

Experiment

Citroscony

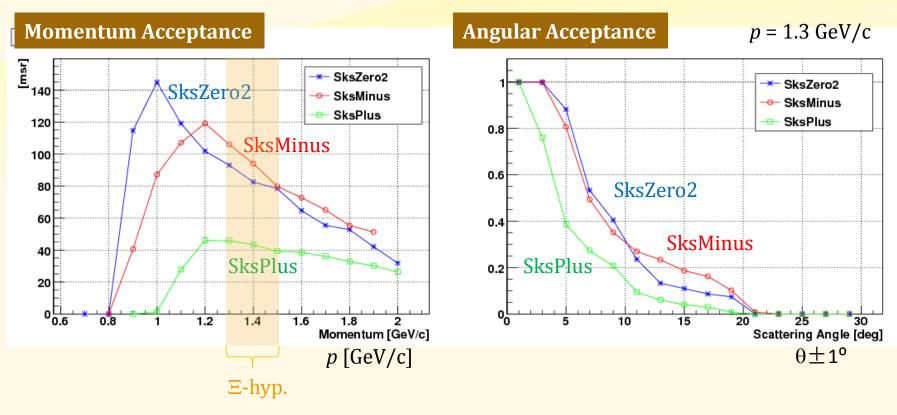
- J-PARC E05: 三-Hypernuclear Spectroscopy
 - ◆ Spectroscopic study of Ξ-hypernucleus
 - using ¹²C(K⁻, K⁺) reaction ; -> ¹²_ΞBe
 - Missing mass spectroscopy
 - measure momentum of both incident K⁻ and outgoing K⁺
 - with high-resolution (~3MeV) and enough statistics
 - Only J-PARC can do this experiment. $<= 1.4 \times 10^6 \text{ K}^-/\text{spill}$
 - Goal
 - observe peaks of Ξ -hypernuclei for the first time.
 - Binding energy => potential depth (real part)
 - Width $=> \Xi N > \Lambda \Lambda$ conversion width (imaginary part)

Experimental Setup

- K1.8 beam line + SksPlus
 - K⁻: 1.8 GeV/c, Beam Spectrometer (Δp/p ~10⁻⁴)
 - K⁺ : 1.3~1.4 GeV/c, SksPlus (∆p/p ~2 x 10⁻³)
 - New D-mag. is added to obtain stronger mag. field.
 - prior momentum resolution than acceptance(40msr)

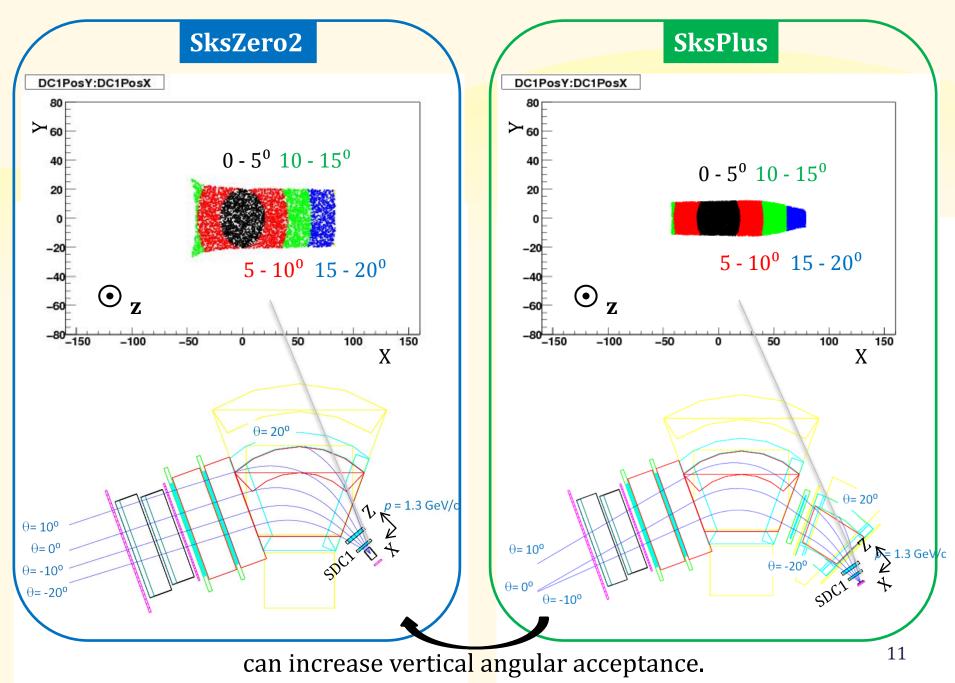

Recent discussion on experimental plan

Setup modification for low intensity beam

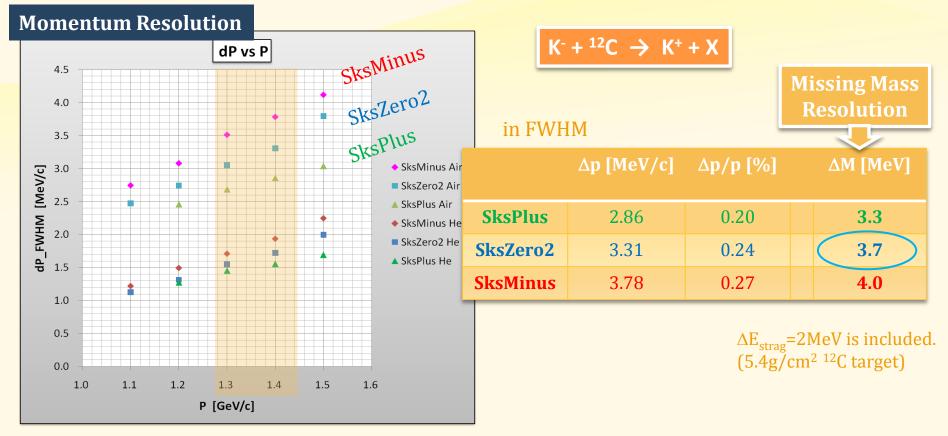

- Accelerator intensity is very limited.
 - now, ~% of design value (270kW)
- In original E05 plan, statistics are miserable. => not realistic
- need more acceptance

- SksZero → SksZero2
 - only move normal SKS downstream detectors to high-momentum side

E05 (low intensity beam version): Acceptance



- Acceptance is larger.
 - SksZero2 > SksPlus


80 msr 40 msr @1.4GeV/c

- 100%-coverage angle
 - SksZero2 < 5°
- SksPlus < 3°

Triggered scattering particle profile @ SDC1

E05 (low intensity beam version) : Resolution

- $\Delta p/p = SksZero2: 0.24\%$, SksPlus: 0.20%
- $\Delta M = SksZero2$: **<u>3.7 MeV</u>**, SksPlus: 3.3 MeV
- Resolution is just a little worse, but <u>acceptable level</u>.

Yield Estimation (E05 original)

• $Y(^{12}_{\Xi}Be) = N_{beam} x N_{target} x d\sigma/d\Omega x \Delta\Omega x f_{decay} x f_{analysis}$ = 1.4x10⁶[/spill] x 2.4x10⁴[spill/day] x 5.4 x 6.02x10⁻⁷/12[/µb]

x 0.06[µb/sr] x 0.04[sr] x 0.5 x 0.7

= 7.6 events/day

~ 230 events/month

Yield Estimation (30kW, w/SksZero2)

• $Y(^{12}_{\Xi}Be) = N_{beam} \times N_{target} \times d\sigma/d\Omega \times \Delta\Omega \times f_{decay} \times f_{analysis}$ = 1.4×10^{6} [/spill] x 2.4×10^{4} [spill/day] x $5.4 \times 6.02 \times 10^{-7}$ / 12 [/µb] 307270 x 5/3 x 0.06[µb/sr] x 0.04[sr] x 0.5 x 0.7 80.0 (in case of Pt T1-target) = 7.6 events/day 2.8 ~ 230 events/month 84 We can take ~80/month statistics at 30kW as the first step of E05. Now planning....

Summary

- J-PARC E05 is planed to observe Ξ-hypernuclei via (K⁻,K⁺) missing mass spectroscopy.
- It provides essential information to S=-2.
- Ξ -N interaction are extracted from B and Γ .
- Resolution and statistics are important at the experimental point of view.
- We are preparing modified experimental plan for low intensity version. Larger acceptance and acceptable resolution are achieved.
- We want to start exp. at 30kW as the first step.