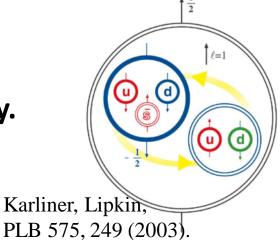
ペンタクォーク探索実験 J-PARC E19: 2nd Run Result

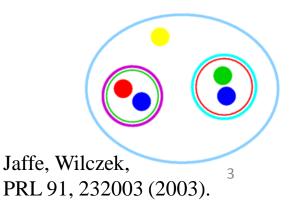
京大理、他

森津 学

for the J-PARC E19 collaboration

日本物理学会2012年秋季大会@京都産業大学 2012/09/12


Contents


- 1. Introduction
- 2. J-PARC E19 experiment
 - (1st run result)
- 3. E19-2nd run
 - analysis status and preliminary result
- 4. Summary

Pentaquark Θ⁺

- Five-quark state (qqqqqq)
 - Allowed combination by QCD.
- Θ^+ includes \overline{s} . \rightarrow At least 5-quark components.
- Θ⁺ has extraordinary narrow width
 - despite of its mass(~1530) over the KN threshold.
 - → Need some mechanism to suppress decay.
 - Diquark-triquark configuration ?
 - Diquark correlation ?
 -
- Pentaquark Θ⁺ must offer us a good opportunity to understand low energy QCD dynamics (, if exist).

A Lot of Θ⁺ Searches

Group	Reaction	Mass	Width	Statistical
_		(MeV)	(MeV)	significance
LEPS	$\gamma C \to K^+K^-(n)$	1540 ± 10	<25	4.6
LEPS	$\gamma C \to K^+ K^-(n)$	1524 ± 2	< 25	5.1
DIANA	$K^+Xe \to K_s^0 p X$	1539 ± 2	<9	4.4
DIANA	$K^+Xe \to K^0_s pX$	1538 ± 2	0.39 ± 0.1	8
CLAS(d)	$\gamma d \to K^+ K^- p(n)$	1542 ± 5	<21	(5.2)
CLAS(p)	$\gamma p \to \pi^+ K^+ K^-(n)$	1555 ± 10	< 26	7.8
SAPHIR	$\gamma p o K^+ K_s^0 n X$	1540 ± 6	$<\!25$	4.8
ITEP	$\nu A \to K_s^0 p X$	1533 ± 5	< 20	6.7
HERMES	$e^+d \to K_s^0 pX$	1528 ± 3	12 ± 9	4.2
COSY-TOF	$pp \to K_s^0 p \Sigma^+$	1530 ± 5	<18	4.7
ZEUS	$e^+p \rightarrow e^+K_s^0pX$	1522 ± 3	8 ± 4	4.6
NOMAD	$\nu A \to K_s^0 p X$	1529 ± 3	$2\sim3$	4.3
SVD	$pA \to K_s^0 pX$	1526 ± 5	<24	5.6
SVD	$pA \to K_s^0 pX$	1523 ± 5	<14	8.0

Negative results

Positive results

		_
Group	Reaction	Limit
BES	$e^+e^- \to J/\Psi \to \Theta\Theta$	$< 1.1 \times 10^{-5} \text{ B.R. } (90\% \text{ C.L.})$
BES	$e^+e^- \to \Psi(2S) \to \bar{\Theta}\Theta$	$< 8.4 \times 10^{-6} \text{ B.R. } (90\% \text{ C.L.})$
ALEPH	$e^+e^- \to Z \to pK_s^0 X$	$< 6.2 \times 10^{-4} \text{ B.R. } (95\% \text{ C.L.})$
BarBar	$e^+e^- \to \Upsilon(4S) \to pK_s^0 X$	$< 1.0 \times 10^{-4} \text{ B.R. } (90\% \text{ C.L.})$
BarBar	$eBe \to pK_s^0 X$	not given
Belle	$e^+e^- \to B^0\bar{B^0} \to p\bar{p}K_s^0X$	$< 2.3 \times 10^{-7} \text{ B.R. } (90\% \text{ C.L.})$
Belle	$K^+ n \to K_s^0 p X$	$\Gamma < 0.64 MeV \ (90\% \ C.L.)$
CDF	$p\bar{p} \to K_s^0 p X$	$< 0.03 \times \Lambda^* \ (90\% \ \text{C.L.})$
SPHINX	$pC \to K_s^0 pX$	$< 0.1 \times \Lambda^* $ (90% C.L.)
HERA-B	$pA \to K_s^0 pX$	$< 2.7\% \times \Lambda^* $ (95% C.L.)
HyperCP	$pCu \to K_s^0 pX$	$< 0.3\% K_s^0 p$
FOCUS	$\gamma BeO \to K_s^0 p X$	$< 0.02 \times \Sigma^* $ (95% C.L.)
PHENIX	$dAu \to K^- \bar{n} X$	not given
WA89	$\Sigma^+ A \to K_s^0 p X$	$< 1.8 \mu b/A (99\% C.L.)$
CLAS	$\gamma p o \bar{K}_s^0 K^+ n$	< 0.8 nb (95% C.L.)
CLAS	$\gamma d o K^- p K^+ n$	< 0.15 - 3 nb (95% C.L.)
CLAS	$\gamma d \to K^+ n \Lambda$	< 5 - 25 nb (95% C.L.)
COSY-TOF		$< 0.15 \mu b/A (95\% C.L.)$
NOMAD	$\nu A \to K_s^0 p X$	$< 2.13 \times 10^{-3} \nu \text{CC (90\% C.L.)}$

A Lot of Θ⁺ Searches

Group	Reaction	Mass	Width	Statistical
		(MeV)	(MeV)	significance (σ)
LEPS	$\gamma C \to K^+K^-(n)$	1540 ± 10	<25	4.6
LEPS	$\gamma C \to K^+ K^-(n)$	1524 ± 2	< 25	5.1
DIANA	K^+Xe			
DIANA	K^+Xe	nt well	estal	hlished in

- ✓ Not well established in experiments
 - → "Must confirm the existence/non-existence

of Θ^+ at first "

ve results

ł. (90% C.L.) 0% C.L.)

% C.L.) C.L.)

% C.L.)

% C.L.)

TILITUILE	0 40 /			
COSY-TOF	$pp \to K_{sP}$	1000 ± 0	710	7.1
ZEUS	$e^+p \rightarrow e^+K_s^0pX$	1522 ± 3	8 ± 4	4.6
NOMAD	$\nu A \to K_s^0 p X$	1529 ± 3	$2\sim3$	4.3
SVD	$pA \to K_s^{\bar 0} pX$	1526 ± 5	$<\!24$	5.6
SVD	$pA \to K_s^0 pX$	1523 ± 5	<14	8.0

<u> </u>		
Group	Reaction	Limit
BES	$e^+e^- \to J/\Psi \to \Theta\Theta$	$< 1.1 \times 10^{-5} \text{ B.R. } (90\% \text{ C.L.})$
BES	$e^+e^- \to \Psi(2S) \to \bar{\Theta}\Theta$	$< 8.4 \times 10^{-6} \text{ B.R. } (90\% \text{ C.L.})$
ALEPH	$e^+e^- \to Z \to pK_s^0 X$	$< 6.2 \times 10^{-4} \text{ B.R. } (95\% \text{ C.L.})$
BarBar	$e^+e^- \to \Upsilon(4S) \to pK_s^0X$	$< 1.0 \times 10^{-4}$ B.R. (90% C.L.)

Positive res

 $\gamma d \to K$

 $\gamma p \to \pi$

 $\gamma p \to K$ $\nu A \to I$

 $e^+d \rightarrow$

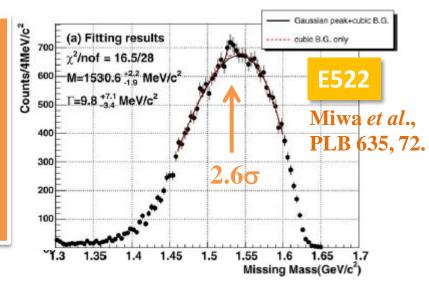
CLAS(d)

CLAS(p)

SAPHIR.

HERMES

ITEP


- ✓ Low energy hadronic reaction (π or K beam)
 - Few data
 - Expect sizable production cross section.
 - Complementary to the photo-production.

-	•	
WA89	$\Sigma^+ A \to K_s^{\circ} p X$	$< 1.8 \mu \text{b/A} (99\% \text{ C.L.})$
CLAS	$\gamma p \to \bar{K}_s^0 K^+ n$	< 0.8 nb (95% C.L.)
CLAS	$\gamma d \to K^- p K^+ n$	< 0.15 - 3 nb (95% C.L.)
CLAS	$\gamma d \to K^+ n \Lambda$	< 5 - 25 nb (95% C.L.)
COSY-TOF	$pp \to \Sigma^+ p K_s^0$	$< 0.15 \mu b/A (95\% C.L.)$
NOMAD	$\nu A \to K_s^0 p X$	$< 2.13 \times 10^{-3} \nu \text{CC (90\% C.L.)}$

Θ^+ search by high-resolution spectroscopy via π^- + p \rightarrow Θ^+ + K $^-$: J-PARC E19

Previous KEK-PS E522 experiment

- Is this a sign of Θ^+ ?
- Not enough sensitivity
- \rightarrow They did not conclude the evidence of Θ^+ .
- mass resolution Δ M~13.4 MeV (FWHM)

J-PARC E19 experiment

- same reaction as E522
- High resolution : SKS → ΔM < 2 MeV (FWHM)
- High statistics: High intensity beam at J-PARC
- ⇒ Conclusive result by higher sensitivity.

The first physics run at the J-PARC hadron facility!

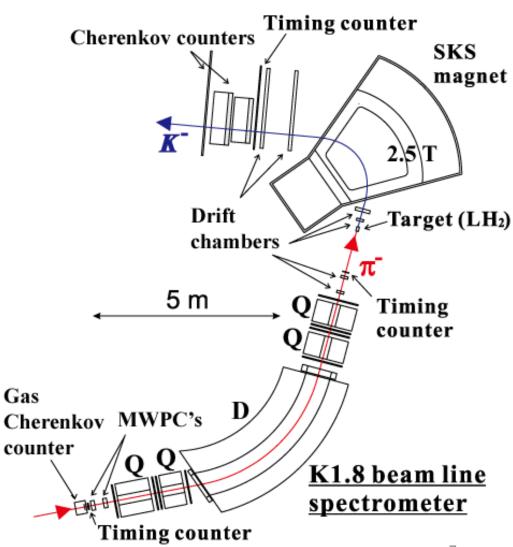
Experimental setup

K1.8 beam line spectrometer & SKS ⇒ Missing mass spectroscopy

- \triangleright K1.8 beam line spectrometer : p_{π}
 - PID counters
 - Timing counters : TOF
 - Gas Cherenkov (π /e) : n=1.002

Tracking

- MWPCs : 1 mm pitch
- MWDCs : 3 mm pitch
- SKS system : p_K

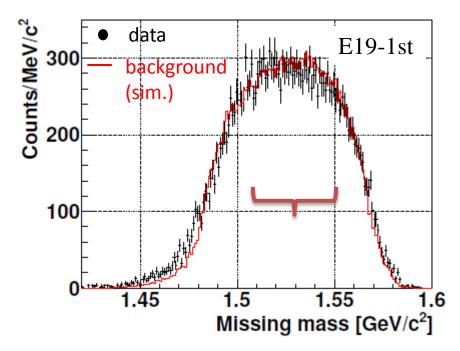

PID counters

- Timing counter
- Aerogel Cherenkov (K/π) : n=1.05
- Lucite Cherenkov (K/p): n=1.49

Tracking

- MWDCs: 3 mm pitch
- DCs: 10 mm pitch, 2m × 1m size
- > Target: Liquid hydrogen
 - ~0.86 g/cm²
 - Free from Fermi motion effect

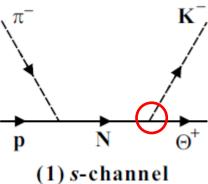
SKS system


History of E19

- 0. 2009/10~
 - K1.8 beam line & detector commissioning start.
- 1. 1st run (2010/10-11)
 - examine the 2.6σ bump structure observed in E522 at p_{π} = 1.92 GeV/c.
 - accumulated **7.8** \times **10**¹⁰ of beam π on target.
- Earthquake (2011/3)
 - Realignment of all the detectors and magnets including SKS.
- **2. 2nd run** (2012/2)
 - new data at the highest beam momentum of 2GeV/c.
 - accumulated 8.7 × 10^{10} of beam π on target.

Successful completion of both 1st and 2nd run

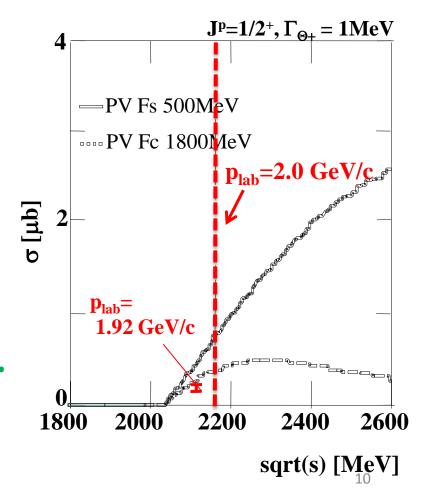
1st run result of E19


$$\pi^- + p \rightarrow K^- + X @ 1.92 \ GeV/c$$

- No prominent peak structure
- Upper limit: < 0.26 μb/sr
 @ 1.51–1.55 GeV/c²

accepted in PRL, arxiv.1203.3604 [nucl-ex]

$$\pi^- \mathbf{p} \longrightarrow \mathbf{K}^- \Theta^+$$



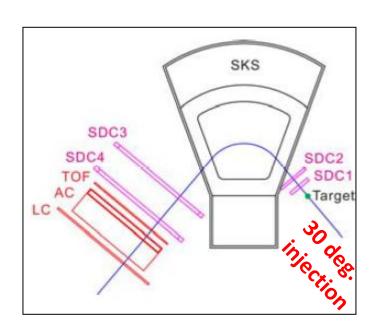
- √ s-channel dominance
- $\checkmark \ \Gamma_{\Theta}^{} \propto g^{2}_{KN\Theta}^{} \propto \sigma_{tot}^{}$
 - → Upper limit of decay width
 - 0.72 MeV for ½+
 - 3.1 MeV for ½-

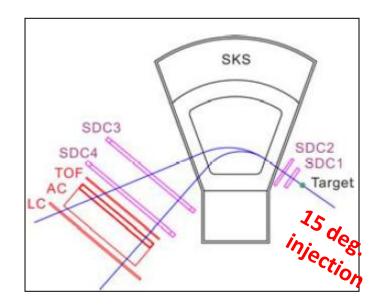
2nd run of E19

- Beam time: 2012/Feb
- Higher beam momentum
 2.0 GeV/c (= Max. of K1.8 B.L.)
- Expecting increased cross section
 - higher sensitivity
- → Stringent restriction on the Θ⁺ production via these hadronic reactions.

Theoretical calculations: Hyodo, Hosaka, PRC 72, 055202 (2005).

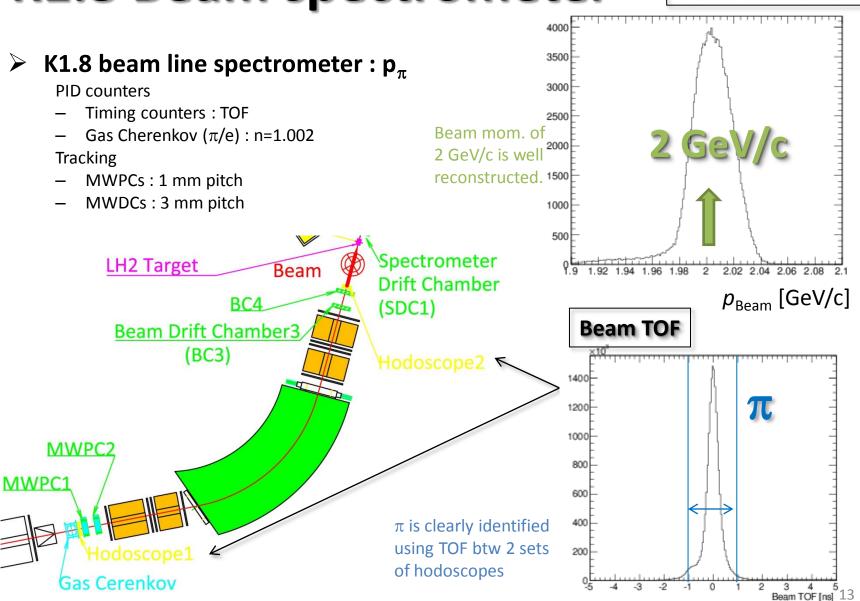
Rotation of SKS




- Higher-momentum acceptance.
- For future experiments.

Setup difference of 1st and 2nd run

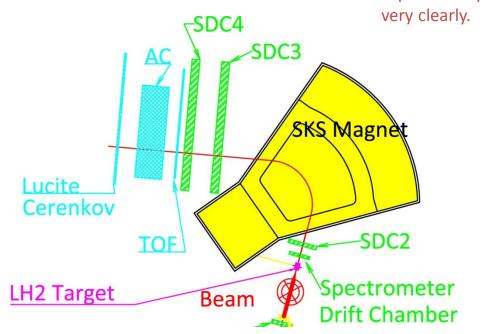
E19-1st run (2010)


E19-2nd run (2012)

K1.8 Beam spectrometer

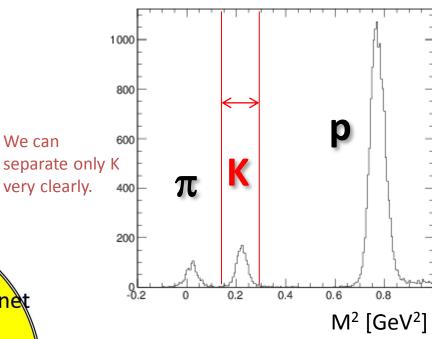
Beam Momentum

SKS spectrometer

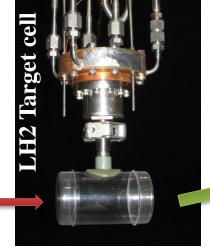

SKS system : p_K

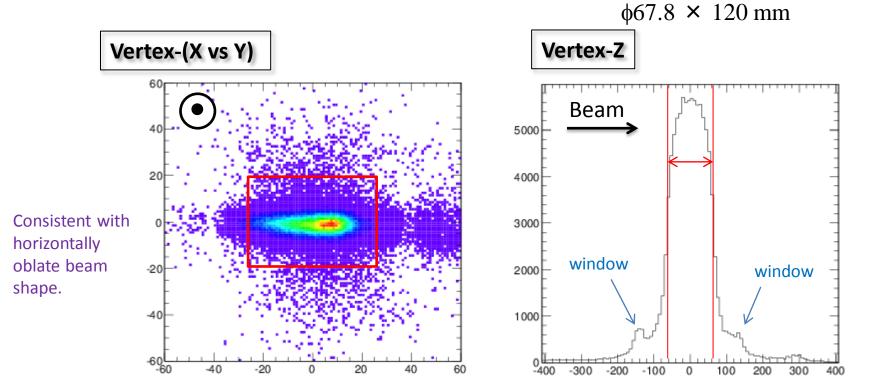
PID counters

- Timing counter
- Aerogel Cherenkov (K/π) : n=1.05
- Lucite Cherenkov (K/p): n=1.49


Tracking

- MWDCs: 3 mm pitch
- DCs: 10 mm pitch, 2m × 1m size


We can


Scattered particle M²

Good momentum reconstruction and PID!!

Vertex Reconstruction

Target cell is clearly identified !!

Performance of the spectrometers

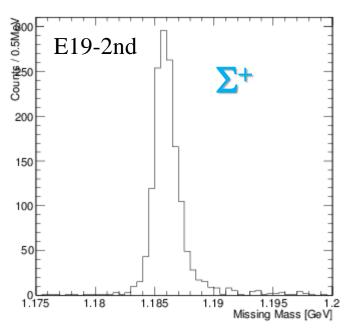
Calibration

- $\pi^+ + p \rightarrow K^+ + \Sigma^+$ @ 1.37 GeV/c
- Missing mass resolution:

$$\Delta M_{\Sigma} = 2.0 \text{ MeV (FWHM)}$$

Equivalent to the 1st run!!

Cf.)
$$\Delta M_{\Sigma} = 1.9 \pm 0.1 \text{ MeV } @ E19-1\text{st}$$

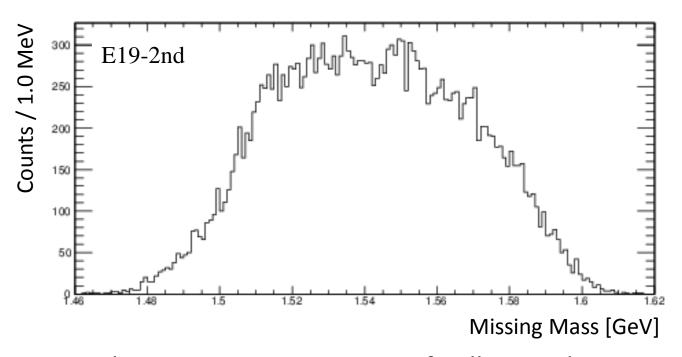

 \Rightarrow estimate Θ^+ case:

$$\Delta M_{\odot} = 1.75 \text{ MeV (FWHM)}$$

Yield estimation (rough):

Almost Consistent with the 1st run!!

Σ^+ Missing Mass



$$\Gamma = 2.02 \pm 0.06$$

Enough performance!!

Preliminary result of E19-2nd run

Missing Mass: $p(\pi^-, K^-)X \otimes p_{\pi} = 2.0 \text{ GeV/c}$

- Analysis parameters were not finally tuned yet.
- No clear peak structure was observed.
- Evaluation of efficiency is on-going.
- Tentative expected sensitivity ~ 0.3 μb/sr.

Summary

- J-PARC E19 : High-resolution search via $\pi^- p \rightarrow K^- \Theta^+$ reaction
 - The first physics experiment at the J-PARC hadron facility!
 - 1st run result was accepted in PRL. (@ 1.92GeV/c beam)
 - More than 10 times higher sensitivity than E522.
 - No clear Θ^+ peak \rightarrow < 0.26 μ b/sr
 - Strong constraint : Γ < ~1 MeV
- 2nd run was successfully carried out. (@ 2 GeV/c beam)
 - Good performance of both K1.8BS and SKS.
 - No clear Θ^+ peak (preliminary)
 - Efficiency evaluation etc. are on-going.