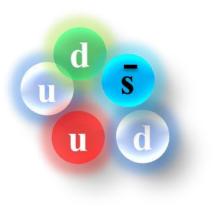


ペンタクォーク探索実験 J-PARC E19: 2nd Run Result (2)

森津 学

for the J-PARC E19 collaboration

(京大理、他)

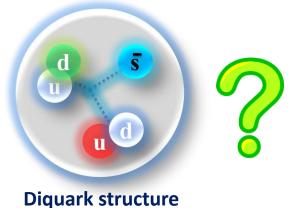

日本物理学会第68回年次大会@広島大学 2013/03/27

Contents

- 1. Introduction
 - J-PARC E19 experiment (おさらい)
- 2. E19-2nd run
 - Updated analysis status and result
 - Upper limit for Θ^+ production cross section
- 3. Summary

Pentaquark Θ^+ search experiment with high statistics and high resolution

Pentaquark Θ^+ **search experiment** with high statistics and high resolution



<u>Pentaquark Θ^+ </u>

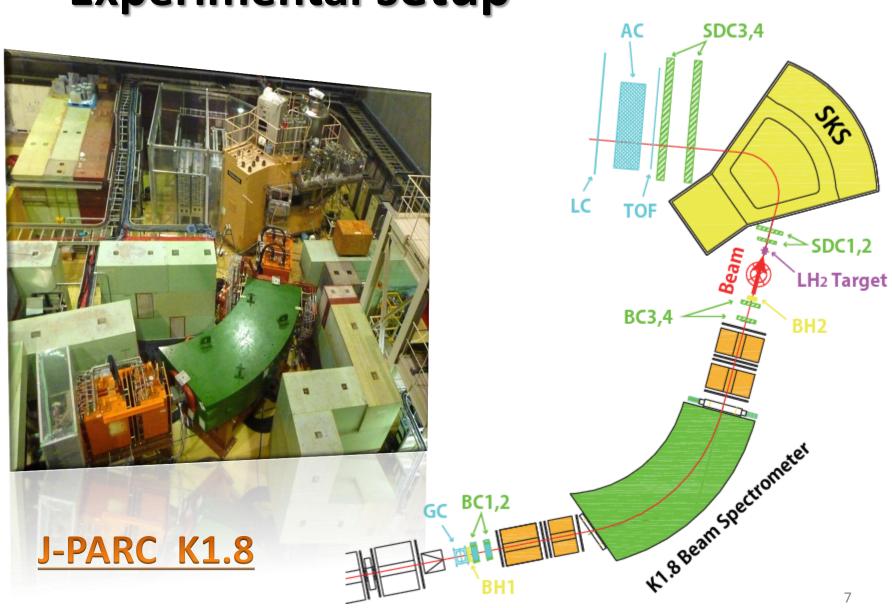
- Genuine exotic hadron (including a s^{bar} quark)
- M = ~1540 MeV/c² (decay $\Theta^+ \rightarrow KN$)
- Γ < a few MeV

Extremely Narrow Width

R.Jaffe, F.Wilczek (2003)

Pentaquark Θ^+ search experiment with high statistics and high resolution

✓ Pion induced reaction

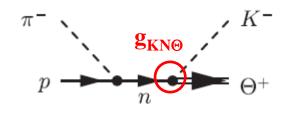

$$\pi^- + \mathbf{p} \rightarrow \mathbf{K}^- + \Theta^+$$

- Complementary to photo-production (LEPS, CLAS etc.)
- Expect sizable production cross section.

Pentaquark Θ⁺ search experiment with high statistics and high resolution

✓ High resolution missing mass spectroscopy — K1.8 beam line & SKS = $\Delta M < 2$ MeV (FWHM)

High sensitivity for the Θ^+ search

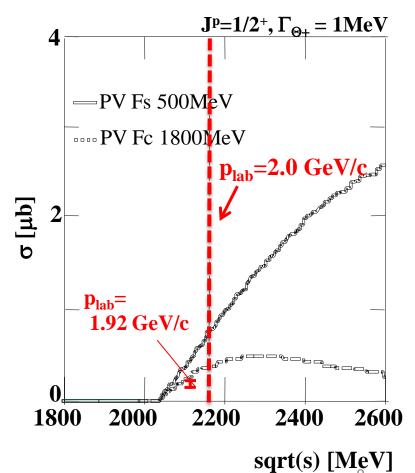


Experimental setup

History of E19

	Comment	Beam Momentum	Beam intensity	π's on Target
2009/10 ~	K1.8 beam line & detector commissioning start			
2010/10-11 1st RUN	examine the 2.6σ bump structure observed in E522	1.92 GeV/c	1.0 M /spill	7.8 x 10 ¹⁰
2012/02 2nd RUN	new data at the highest beam momentum at K1.8	2.0 GeV/c	1.7 M /spill	8.7 x 10 ¹⁰
Shirotori et al., PRL 109, 132002 (2012).				
This presentation				

Θ⁺ decay width



- ✓ s-channel dominance
- $\Gamma_{\Theta} \propto g^2_{KN\Theta} \propto \sigma_{tot}$
- Higher beam momentum provides higher sensitivity.

➢ 2.0 GeV/c

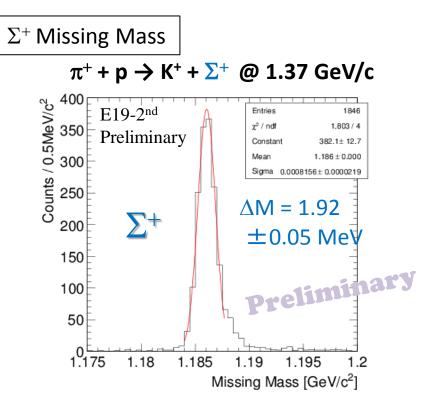
- (= Max. of K1.8 B.L.)
- ✓ Even if no peak, stronger constraint on the Θ⁺ decay width will be obtained.

Theoretical calculations : T. Hyodo et al., PRC 72, 055202 (2005), PTP 128, 523 (2012).

Analysis result of the 2nd run

Analysis Strategy

- 1. Consistency check with 1st run
 - π⁺ + p → K⁺ + Σ⁺ @ 1.37 GeV/c
 - Same reaction and same momentum with 1st run.
- 2. Calibration for 2nd run
 - $\pi^- + p \rightarrow K^+ + \Sigma^- @ 1.45 \text{ GeV/c}$
 - Same K momentum as Θ^+ run @ 2.00 GeV/c
 - Evaluate Θ^+ missing mass resolution.
- **3.** Θ^+ run analysis


Consistency check with 1st run

- \checkmark π⁺ + p → K⁺ + Σ⁺ @ 1.37 GeV/c
- ✓ Missing mass resolution:


 $\Delta M_{\Sigma} = 1.92 \text{ MeV}(\text{FWHM})$

- Equivalent to the 1st run.

Cf.) 1.86±0.08 MeV @ E19-1st

Consistency check with 1st run

0

2

- ✓ Differential cross section
 - Almost consistent with 1st run and reference data.
 - Good understanding of efficiencies and acceptance.

Consistency Check -> OK

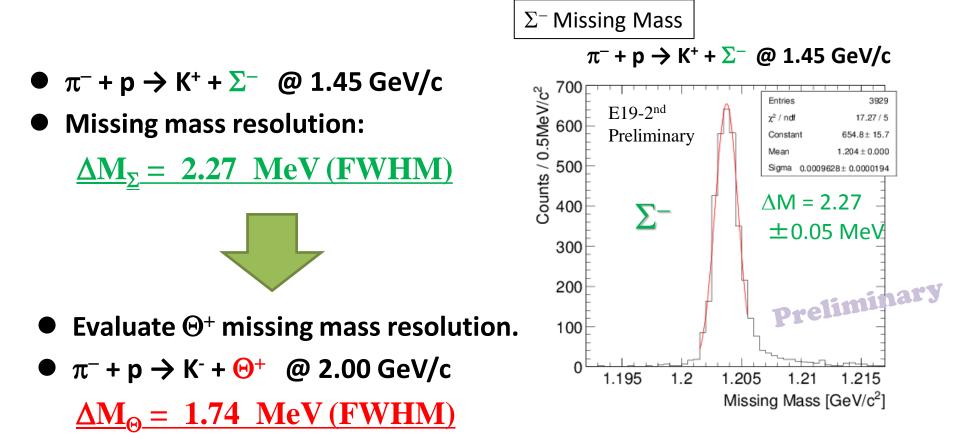
6

8

10

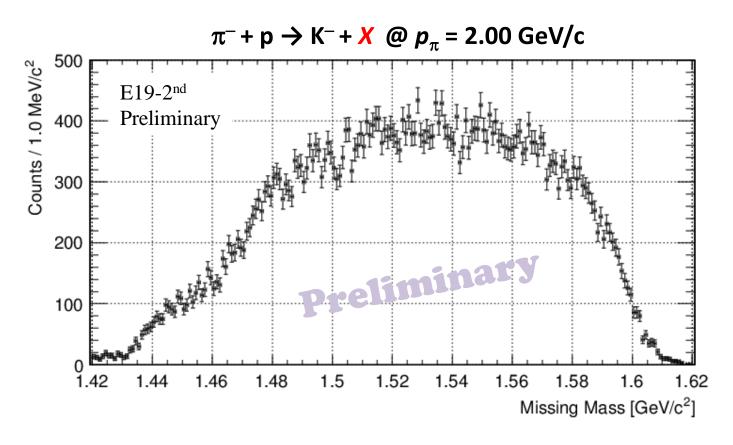
12

14

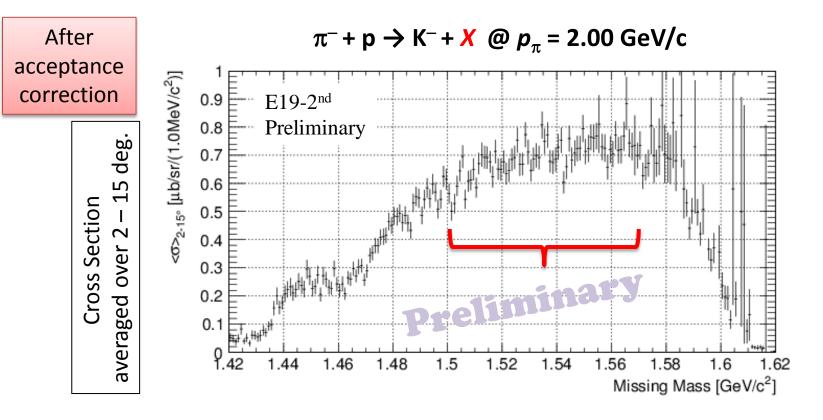

16

Scattering Angle (Lab) [deg.]

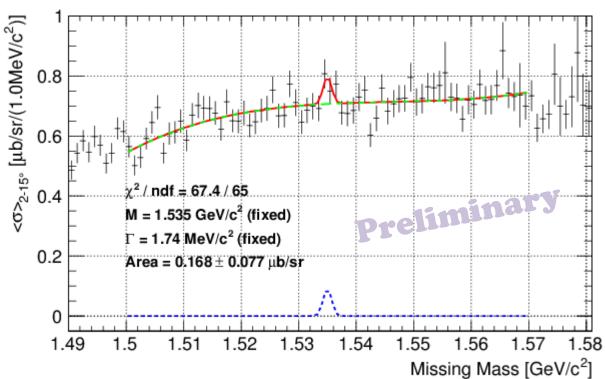
18


20

Calibration for 2nd run


Cf.) $\Delta M_{\Theta} = 1.44$ MeV @ E19-1st This is affected by increase of beam momentum (1.92 \rightarrow 2.00 GeV/c)

Missing Mass of Θ^+ run

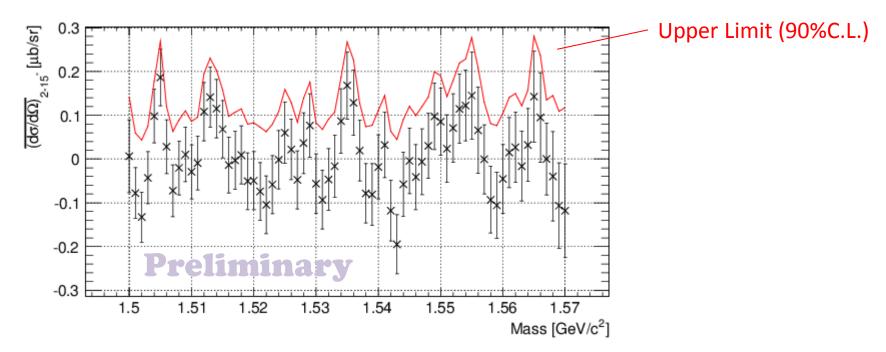

\checkmark No peak structure was observed in Θ^+ run.

Missing Mass of Θ^+ run

For upper limit, use 1.50 -- 1.57 GeV/c² as flat acceptance region.

Upper limit for Θ^+ production cross section

An example of fitting result @ 1.535 GeV/c²


Fitting function

- Signal: Gaussian with fixed width of 1.74 MeV
- B.G.: 3rd order pol.

Search mass region from 1.50 to 1.57 GeV/c².

Upper limit for Θ^+ production cross section

Fitting results of each mass and Upper limit (90%C.L.)

Upper limit for differential cross section averaged from 2 to 15 deg:
< 0.28 μb/sr @ 1.50 – 1.57 GeV/c²

Cf.) E19-1st : < 0.26 μ b/sr @ 1.51– 1.55 GeV/c²

• Difference comes mainly from evaluated M.M.Resol. ($1.44 \rightarrow 1.74$ MeV)

Summary

- J-PARC E19 is a pentaquark ⊖⁺ search experiment with high statistics and high resolution.
 - $\pi^- p \rightarrow K^- \Theta^+$ reaction
 - J-PARC K1.8 B.S. and SKS
- E19 2nd run result was presented. (@ 2.0 GeV/c beam)
 - Consistency with 1st run was checked. \rightarrow O.K.
 - Θ^+ missing mass resolution of 1.74 MeV was evaluated.
 - No peak structure was observed in MM spectrum.
 - Upper limit for Θ^+ production cross section was obtained to be 0.28 µb/sr @ 1.50 1.57 GeV/c²

✓ Next

- Compare theoretical calculation.
- $-\,$ Derive new upper limit for $\Theta^{\scriptscriptstyle +}$ decay width.